
Coverage-based Greybox Fuzzing as Markov Chain

Marcel Bohme, Van-Thuan Pham, Abhik Roychoudhury

School Of Computing, NUS, Singapore

FM Update 2018

Presented by - Raveendra Kumar M, Animesh Basak Chowdhury

TCS Research

July 27, 2018

Some of the slides are adapted from Author’s presentation.

Introduction

Fuzz testing is an automated testing technique that uncovers
software error by executing the target program with large number
of randomly generated test inputs.

Three main approaches.
I Black-box fuzzing : Random testing1.
I White-box fuzzing: SAGE 2.
I Grey-box fuzzing : American Fuzzy Lop 3.

1Miller et al, An empirical study of Unix utilities, CACM, 1990.
2Goefroid et al, Automated whitebox fuzz testing, NDSS, 2008.
3Zalewski, http://lcamtuf.coredump.cx/afl/.

Grey-box fuzzing
Black-Box Fuzzing → Open Loop Control System.
GreyBox Fuzzing → Closed Loop Control System.
Feedback Function H(s) ∼ Branch-Pair Coverage (Pair of
consecutive nodes in a CFG)

Instrumented
Program P'

Execute P'
with .tg

Is
Interesting

 behaviour?

Monitor
Coverage.

Generate New
Inputs from

.t ∈ TG

Retain .

tg

= ∪TG TG tg

Discard . tg

Yes

No

Target
Program P

𝑖 = 0
𝑐𝑏 = 0

𝑐𝑏 = 𝑐𝑏 + 1

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑏

𝑟𝑒𝑎𝑑(𝑓𝑑, 𝑖𝑛𝑝, 20)

𝑖𝑛𝑝 𝑖 ! = ‘\0’

A
true

false

𝒓𝒎

𝒆𝒎

𝑖 = 𝑖 + 1

𝑖𝑛𝑝[𝑖] == ‘𝑏’

D

false
C

true

E

1

2

3

4

5

6

9

B

𝑎𝑏𝑜𝑟𝑡()

8 𝑐𝑏 ≥ 5
F
false

"𝑎"①

Id input AB AC BA CA BD CD DE DF

1 "𝑎" 1 1 1

Grey-box fuzzing – Working example

𝑖 = 0
𝑐𝑏 = 0

𝑐𝑏 = 𝑐𝑏 + 1

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑏

𝑟𝑒𝑎𝑑(𝑓𝑑, 𝑖𝑛𝑝, 20)

𝑖𝑛𝑝 𝑖 ! = ‘\0’

A
true

false

𝒓𝒎

𝒆𝒎

𝑖 = 𝑖 + 1

𝑖𝑛𝑝[𝑖] == ‘𝑏’

D

false
C

true

E

1

2

3

4

5

6

9

B

𝑎𝑏𝑜𝑟𝑡()

8 𝑐𝑏 ≥ 5
F
false

"𝑎"

"𝑏" "𝑎𝑏" "𝑐"

①

②
③

Id input AB AC BA CA BD CD DE DF

1 "𝑎" 1 1 1

2 “b” 1 1 1

3 “ab” 1 1 1 1 1

“c” 1 1 1

Grey-box fuzzing – Working example

𝑖 = 0
𝑐𝑏 = 0

𝑐𝑏 = 𝑐𝑏 + 1

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑏

𝑟𝑒𝑎𝑑(𝑓𝑑, 𝑖𝑛𝑝, 20)

𝑖𝑛𝑝 𝑖 ! = ‘\0’

A
true

false

𝒓𝒎

𝒆𝒎

𝑖 = 𝑖 + 1

𝑖𝑛𝑝[𝑖] == ‘𝑏’

D

false
C

true

E

1

2

3

4

5

6

9

B

𝑎𝑏𝑜𝑟𝑡()

8 𝑐𝑏 ≥ 5
F
false

"𝑎"

"𝑏" "𝑎𝑏" "𝑐"

①

②
③

Id input AB AC BA CA BD CD DE DF

1 "𝑎" 1 1 1

2 “b” 1 1 1

3 “ab” 1 1 1 1 1

“c” 1 1 1

Grey-box fuzzing – Working example

𝑖 = 0
𝑐𝑏 = 0

𝑐𝑏 = 𝑐𝑏 + 1

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑏

𝑟𝑒𝑎𝑑(𝑓𝑑, 𝑖𝑛𝑝, 20)

𝑖𝑛𝑝 𝑖 ! = ‘\0’

A
true

false

𝒓𝒎

𝒆𝒎

𝑖 = 𝑖 + 1

𝑖𝑛𝑝[𝑖] == ‘𝑏’

D

false
C

true

E

1

2

3

4

5

6

9

B

𝑎𝑏𝑜𝑟𝑡()

8 𝑐𝑏 ≥ 5
F
false

"𝑎"

"𝑏" "𝑎𝑏" "𝑐"

"𝑐" "𝑏𝑏" "… "

①

②
③

 "𝑎𝑏𝑏""𝑎𝑏𝑎" "… "

⑤④

Id input AB AC BA CA BD CD DE DF

1 "𝑎" 1 1 1

2 “b” 1 1 1

3 “ab” 1 1 1 1 1

4 “bb” 2 1 1 1

5 “aba” 1 2 1 1 1 1

“abb” 2 1 1 1 1 1

Grey-box fuzzing – Working example

Grey-box fuzzing algorithm

Algorithm 1 Grey-box fuzzing algorithm
Require: Program P, Initial non-crashing seeds Is .
Ensure: Set of crashing inputs TC and a tree of test inputs TG for P.
1: TG = Is
2: Run P with Is and observe visit counts of branch pairs.
3: repeat
4: t = getNextInput() . t ∈ TG .
5: N = assignEnergy(t)
6: Tm = fuzzTestInput(t,N) . Tm : {tg |tg ∈ MUTATE(t)}
7: for all tg ∈ Tm do
8: Sg = run(P,tg)
9: if Sg = ⊥ then . Did tg caused a crash or hang ?

10: TC .add(tg)
11: else if isInterestingTestInput(tg ,Sg) then
12: TG .add(tg) . Retain interesting test input
13: end if
14: end for
15: until User interrupt received.
16: return (TG ,TC)

N = assignEnergy(t)

Let N=100.
Let N1 be the N ∗ a factor inversely proportional to tg ’s execution
time.
(Ranging from 0.1 for higher execution time to 3 times for lower execution times)

Let N2 be N1 ∗ a factor based on number of branch pairs covered
by tg .
(Ranging from 0.25 for lower coverage to 3 times for higher coverage)

Let N3 be N2 ∗ a factor based on cycle of tg ’s discovery and
number of time t fuzzed.
(Low = 1 to high = 4)

Let N4 be N3 ∗ a factor based on depth of tg ’s discovery.
(Low = 1 to high = 5)

return N4

Problem Statement

1 void crashme (char *s) {
2
3 if(s[0] == ’b’)
4
5 if(s[1] == ’a’)
6
7 if(s[2] == ’d’)
8
9 if(s[3] == ’!’)

10
11 abort() ;
12 }

Listing 1: Program crashes when
string s == "bad!"

BlackBox Fuzzing

I Assumption : 28 characters.
I Expected no. of testcase required

to catch the bug : 232.

Coverage-based GreyBox
Fuzzing (CGF)

I Markov Chain modeling of CGF
gives the expectation that 212 is
minimum test required to catch
the crash.

I Current CGF algorithms are
independent of judicious energy
assignment to interesting test
vectors for further fuzzing.

Problem Statement

1 void crashme (char *s) {
2
3 if(s[0] == ’b’)
4
5 if(s[1] == ’a’)
6
7 if(s[2] == ’d’)
8
9 if(s[3] == ’!’)

10
11 abort() ;
12 }

Listing 2: Program crashes when
string s == "bad!"

Objective
Tune energy assignment scheme close

to ideal.

BlackBox Fuzzing

I Assumption : 28 characters.
I Expected no. of testcase required

to catch the bug : 232.

Coverage-based GreyBox
Fuzzing (CGF)

I Markov Chain modeling of CGF
gives the expectation that 212

tests are required to catch the
crash.

I Current CGF algorithms are
independent of judicious energy
assignment to interesting test
vectors for further fuzzing.

Some terminologies

Branch Pair Tuple BPi : <bpi ,Ci> where, bpi - Branch Pair i , Ci -
Visit Count.

Path: Sequence of branch pair tuples [BPi ,BPj . . .] visited during
the execution of the program P on a test vector t.

Basic Concepts : Probabilistic Modeling

Random Variable
Maps possible outcomes from Sample Space to a real valued
number.

X : Ω→ R

Conditional Probability
Calculates probability of an event happening, given a partial
information.

P(B|A) = P(B ∩ A)/P(A)

Stochastic Process
Collection of Random Variables indexed by time.

Discrete Time Stochastic Process (DTSP)

Sequence of random variables X0, X1, X2, . . Denoted by { Xn }.

Time: n = 0, 1, 2, . . .

State Space: m-dimensional vector, s = (s1, s2, . . . , sm)
Set of all values that the Xn’s can take.

Also, Xn takes one of m values, so Xn ↔ s.

Discrete Time Markov Chain (DTMC)

DTSP → Discrete time Markov Chain (DTMC) iff

P[Xn+1 = j | Xn = in, ...,X0 = i0] = P[Xn+1 = j |
Xn = in] = Pij(n) (Markovian Property)

Markov Property
Future state is independent of the past given the present state is
fully known/observable.

Pij(n): Probability of transition from state i to state j , at time n.

This is also referred as one-step transition probability.

Rat Maze Problem as DTMC

1 2 3

4 5 6

7 8 9

Figure : A rat maze. Allowed
transitions are horizontal and
vertical neighbors.

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/21/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3 1/3

1/3

1/3

1/4

1/4

1/4

1/41/3

1 2 3

4

7

5 6

8 9

Figure : Markov Chain Modeling of Rat
Maze Problem

Homogeneous DTMC

DTMC → Homogeneous iff transition probabilities do not depend
on the time n, i.e.

P[Xn+1 = j |Xn = i] = P[X1 = j |X0 = i] = Pij .

Transition matrix of Homogeneous DTMC P = [Pij]i ,j∈E

P =

p1,1 p1,2 p1,3 p1,4
p2,1 p2,2 p2,3 p2,4
p3,1 p3,2 p3,3 p3,4
p4,1 p4,2 p4,3 p4,4

Coverage-Based Fuzzing as Homogeneous DTMC

Coverage-based Greybox fuzzing can modeled as Timed
homogeneous DTMC.

State Space S = S+ + S−.
S+ - Paths already explored by seeds TG .
S− - Paths yet to be discovered by fuzzing t ∈ TG .

Assumptions :
Probability of exercising path i(undiscovered) from already
generated input tj , is same as probability of creating test input tj
from test vectors ti .

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

Example

4

●●
●

●
●●

●●●●●●●●●●
●●●●●●●●●●

●●

mean = 1288

100

101

102

103

104

105

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Path Index

N
um

be
r o

f T
es

t C
as

es

Figure 1: #Fuzz exercising a path (on a log-scale)
after running AFL for 10 minutes on the nm-tool.

the low-frequency paths are valid and interesting. Basically,
almost each valid input would exercise di↵erent behavior.
Hence, in this paper we devise strategies to explore such
low-density regions more e�ciently.

Rapid mixing. Moreover, such Markov chains are mostly
rapidly mixing. Given our exploration objective, this is most
unfortunate. It takes only a few transitions to “forget” the
initial state and arrive in a high-density region that is vis-
ited by most walkers. After a few transitions, the probability
that the current state corresponds to a high-frequency path
is high, no matter whether the walker started with an in-
put exercising a low-frequency path or not, or whether the
walker started with a valid or an invalid input.

Benefits. The Markov chain model of greybox fuzzing has
several benefits. For example, it opens greybox fuzzing as
a tool for the e�cient approximation of numerical program
properties, such as the worst-case or average execution time
or energy consumption. There exist several Markov Chain
Monte Carlo (MCMC) methods, like Simulated Annealing
[13] that o↵er guarantees on the convergence to the true
value. In the context of vulnerabilty research, the Markov
chain model allows to cast the objective of fuzzing as an
e�cient exploration of the state space of a Markov chain.

3.2 Running Example
On a high level, we model the probability that fuzzing a

test input t 2 T which exercises some path i generates an
input which exercises path j as transition probabilities pij

in a Markov chain. We illustrate this model using the simple
program in Listing 2 which takes as input a 4-character word
and crashes for the input “bad!”.⌥ ⌅

1 void crashme (char* s) {
2 if (s[0] == ’b’)
3 if (s[1] == ’a’)
4 if (s[2] == ’d’)
5 if (s[3] == ’!’)
6 abort();
7 }⌃ ⇧

Listing 2: Motivating example.

The program has five execution paths. Path 0 (****) is
executed by all strings that do not start with the letter ’b’.
Path 1 (b***) is executed by all strings starting with“b”that
do not continue with the letter ’a’. Path 2 (ba**) is executed
by all strings starting with“ba”that do not continue with the
letter ’d’. Path 3 (bad*) is executed by all strings starting
with “bad” that do not continue with the letter ’ !’. Finally,
Path 4 is executed only by the input “bad!”.

Now, let us specify the implementation of mutate input
(MI) to randomly mutate an input s = hc0, c1, c2, c3i. MI
chooses with equal probability a character c from s and sub-
stitutes it by a character that is randomly chosen from the
set of 28 ASCII characters. For example, the word “bill” ex-
ercises Path 1. With probability 1/4, MI chooses the second
character c1 and with probability 1/28 it chooses the letter
’a’ for the substitution. With a total probability of 210, MI
generates the word “ball” from “bill” as the next test input
which exercises Path 2.

b***

ba**

bad*

bad!

1 � 2�10

2�10

3
4

2�10

1
2

+ 2�10

2�10

1
4

+ 2�9

2�10

2�8

1
4
� 2�10

Figure 2: Markov chain for motivating example

Figure 2 represents the simplified transition matrix pij as
a state diagram.8 For example, if the current input is the
word “bill”, the Markov Chain is in the state b***. The like-
lihood to transition to the state ba** is 2�10 as explained
earlier. In other words, on average it takes 210 = 1024 exe-
cutions of MI on the word“bill” to exercise Path 3 and reach
state ba**. Given the word “bill”, the likelihood to transi-
tion to the same state b*** is 0.75 because MI may choose
the first letter and ’b’ as substitute or the second letter and
any letter except ’a’ as substitute with a total probability
of 0.25 and it may choose the third or fourth letter with
a total probability of 0.5. The probability to transition to
state **** is

�
1/4 � 2�10

�
because MI may choose the first

of four letters and substitute it with any letter except ’b’.
Notice that there is a very high probability density in

state ****. Most 4-character words do not start with ’b’
such that the initial distribution is heavily biased towards
that state. The random walker can transition to the next
state only with probability 2�10, stays in b*** with prob-
ability 3/4 and comes back to the state **** with the ap-
proximate probability 1/4. A long time will pass until the
walker reaches the state bad!.

3.3 Exploring the Markov Chain
A greybox fuzzer is an ensemble of random walkers in the

Markov chain. There is one walker for each input t in the
circular queue T . The objective is to discover an undiscov-
ered and interesting path that is not exercised by any t 2 T
using the least number of steps. Conceptually, all walkers

8For simplicity, we ignore some low probability transitions,
e.g., from state **** to state bad!.

●●
●

●
●●

●●●●●●●●●●
●●●●●●●●●●

●●

mean = 1288

100

101

102

103

104

105

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Path Index

N
um

be
r o

f T
es

t C
as

es

Figure 1: #Fuzz exercising a path (on a log-scale)
after running AFL for 10 minutes on the nm-tool.

the low-frequency paths are valid and interesting. Basically,
almost each valid input would exercise di↵erent behavior.
Hence, in this paper we devise strategies to explore such
low-density regions more e�ciently.

Rapid mixing. Moreover, such Markov chains are mostly
rapidly mixing. Given our exploration objective, this is most
unfortunate. It takes only a few transitions to “forget” the
initial state and arrive in a high-density region that is vis-
ited by most walkers. After a few transitions, the probability
that the current state corresponds to a high-frequency path
is high, no matter whether the walker started with an in-
put exercising a low-frequency path or not, or whether the
walker started with a valid or an invalid input.

Benefits. The Markov chain model of greybox fuzzing has
several benefits. For example, it opens greybox fuzzing as
a tool for the e�cient approximation of numerical program
properties, such as the worst-case or average execution time
or energy consumption. There exist several Markov Chain
Monte Carlo (MCMC) methods, like Simulated Annealing
[13] that o↵er guarantees on the convergence to the true
value. In the context of vulnerabilty research, the Markov
chain model allows to cast the objective of fuzzing as an
e�cient exploration of the state space of a Markov chain.

3.2 Running Example
On a high level, we model the probability that fuzzing a

test input t 2 T which exercises some path i generates an
input which exercises path j as transition probabilities pij

in a Markov chain. We illustrate this model using the simple
program in Listing 2 which takes as input a 4-character word
and crashes for the input “bad!”.⌥ ⌅

1 void crashme (char* s) {
2 if (s[0] == ’b’)
3 if (s[1] == ’a’)
4 if (s[2] == ’d’)
5 if (s[3] == ’!’)
6 abort();
7 }⌃ ⇧

Listing 2: Motivating example.

The program has five execution paths. Path 0 (****) is
executed by all strings that do not start with the letter ’b’.
Path 1 (b***) is executed by all strings starting with“b”that
do not continue with the letter ’a’. Path 2 (ba**) is executed
by all strings starting with“ba”that do not continue with the
letter ’d’. Path 3 (bad*) is executed by all strings starting
with “bad” that do not continue with the letter ’ !’. Finally,
Path 4 is executed only by the input “bad!”.

Now, let us specify the implementation of mutate input
(MI) to randomly mutate an input s = hc0, c1, c2, c3i. MI
chooses with equal probability a character c from s and sub-
stitutes it by a character that is randomly chosen from the
set of 28 ASCII characters. For example, the word “bill” ex-
ercises Path 1. With probability 1/4, MI chooses the second
character c1 and with probability 1/28 it chooses the letter
’a’ for the substitution. With a total probability of 210, MI
generates the word “ball” from “bill” as the next test input
which exercises Path 2.

b***

ba**

bad*

bad!

1 � 2�10

2�10

3
4

2�10

1
2

+ 2�10

2�10

1
4

+ 2�9

2�10

2�8

1
4
� 2�10

Figure 2: Markov chain for motivating example

Figure 2 represents the simplified transition matrix pij as
a state diagram.8 For example, if the current input is the
word “bill”, the Markov Chain is in the state b***. The like-
lihood to transition to the state ba** is 2�10 as explained
earlier. In other words, on average it takes 210 = 1024 exe-
cutions of MI on the word“bill” to exercise Path 3 and reach
state ba**. Given the word “bill”, the likelihood to transi-
tion to the same state b*** is 0.75 because MI may choose
the first letter and ’b’ as substitute or the second letter and
any letter except ’a’ as substitute with a total probability
of 0.25 and it may choose the third or fourth letter with
a total probability of 0.5. The probability to transition to
state **** is

�
1/4 � 2�10

�
because MI may choose the first

of four letters and substitute it with any letter except ’b’.
Notice that there is a very high probability density in

state ****. Most 4-character words do not start with ’b’
such that the initial distribution is heavily biased towards
that state. The random walker can transition to the next
state only with probability 2�10, stays in b*** with prob-
ability 3/4 and comes back to the state **** with the ap-
proximate probability 1/4. A long time will pass until the
walker reaches the state bad!.

3.3 Exploring the Markov Chain
A greybox fuzzer is an ensemble of random walkers in the

Markov chain. There is one walker for each input t in the
circular queue T . The objective is to discover an undiscov-
ered and interesting path that is not exercised by any t 2 T
using the least number of steps. Conceptually, all walkers

8For simplicity, we ignore some low probability transitions,
e.g., from state **** to state bad!.

•

• Defining the coverage-based fuzzer:
• Start with seed that is a random 4-letter word.
• Given a seed, the fuzzer chooses a letter and substitutes it.

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

Coverage-based Fuzzing

3

Greybox

as Markov Chain

📄
📄

📄📄
📄

📄

Markov chain describes the probability pij that fuzzing the  
input exercising path i generates an input exercising path j

high energy 
(high #fuzz)

low energy 
(low #fuzz)

energy = #fuzz

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

Coverage-based Fuzzing

3

Greybox

as Markov Chain

📄 📄
i j

pij = 100
1

How much #fuzz should be generated? = What is the minimum energy required  
to expect discovery of new path j?

Coverage-based Fuzzing
Greybox

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

Challenges of

4

•

• AFL’s power schedule is constant in the number of times s(i)
the seed has been chosen for fuzzing.

📄 📄
i j

pij = 100
1

80k

way too much energy

Coverage-based Fuzzing
Greybox

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

Challenges of

4

•

• AFL’s power schedule is constant in the number of times s(i)
the seed has been chosen for fuzzing.

📄 📄
i j

pij =
80k

not enough energy

100000
1

📄

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

5

•

• AFL’s power schedule is constant in the number of times s(i)
the seed has been chosen for fuzzing.

• AFL’s power schedule always assigns high energy

Challenges of Coverage-based Fuzzing
Greybox

📄
📄
📄

📄

📄80k

📄
📄

Valid PDFToo much energy assigned to  
high-frequency paths!

Exercises a 
high-frequency 

path (rej. inv. PDF)

Stationary Distribution and Neighborhood Density

For a time homogeneous DTMC, the vector π is called stationary
distribution of MC.

∀j ∈ S , 0 ≤ πj ≤ 1.
1 =

∑
i∈S πi .

πj =
∑

i∈S πi ∗ pij

Neighborhood Density of π

I High Density Region :- Set of neighborhood of paths I , where
µi∈I (πi) > µtg∈TG (πg).

I Low Density Region :- Set of neighborhood of paths I , where
µi∈I (πi) < µtg∈TG (πg).

µ : Arithmetic Mean

•

• AFL spends too much energy on high-frequency paths.

• We suggest to spend more energy on low-frequency paths 
and less energy on high-frequency paths.

• We suggest to spend the minimum energy required  
to discover a new state.

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

7

A power schedule manages the
energy spent on each state.

Challenges of Coverage-based Fuzzing
Greybox

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

•

• Constant:
• AFL uses this schedule (fuzzing ~1 minute)
• .. how AFL judges fuzzing time for the test exercising path i

• Cut-off Exponential:

• energy increases exponentially
• but spend no energy on states in high-density region

• .. is a constant
• .. #times the input exercising path i has been chosen for fuzzing
• .. #fuzz exercising path i (path-frequency)
• .. mean #fuzz exercising a discovered path (avg. path-frequency)
• .. maximum energy expendable on a state

Power Schedules

8

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

•

• Constant:
• AFL uses this schedule (fuzzing ~1 minute)
• .. how AFL judges fuzzing time for the test exercising path i

• Cut-off Exponential:

• energy increases exponentially
• but spend no energy on states in high-density region

• .. is a constant
• .. #times the input exercising path i has been chosen for fuzzing
• .. #fuzz exercising path i (approx. the page rank of i)
• .. mean #fuzz exercising a discovered path
• .. maximum energy expendable on a state

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

Power Schedules

8

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

• Exponential:

• Instead of spending no energy on states in high-density region,
• spend energy proportional to the density for the state’s region

us to get a first estimate of whether i lives in a high-density
region. When the energy p(i) reaches a constant M 2 N, the
maximum number test inputs are generated. Intuitively, af-
ter the general neighborhood is explored and it is established
that i is in a low-density domain, the fuzzer can invest signif-
icantly more energy trying to find paths in the low-density
neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t 2 T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
The required energy for a discovered state is regulated

by a power schedule. In general, the number of inputs p(i)
generated by fuzzing input ti 2 T which exercises path i is a
function of a) the number of times s(i) that ti has previously
been choosen from the circular queue and b) the number
of generated inputs f(i) exercising i. Note that f(i) also
counts the number of rejected inputs and the number of
those inputs generated by fuzzing any retained test input
t 2 T . We call the inputs generated by fuzzing ti also the
fuzz of ti. We discuss and evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the fuzzing time for an input ti is kept fairly constant
every time s(i) that ti is being chosen from the circular
queue. The energy p(i) for state i is computed as

p(i) = ↵(i) e.g., for AFL (1)

where ↵(i) remains constant as s(i) or f(i) varies. For
instance, AFL computes ↵(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule with a fairly constant but also fairly low fuzzing
time. The energy p(i) for state i is computed as

p(i) =
↵(i)

�
(2)

where ↵(i)/� maintaints the fuzzer’s judgement ↵(i) of the
quality of ti and where � > 1 is a constant.

Cut-O↵ Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

(
0 if f(i) > µ

min
⇣

↵(i)
�

· 2s(i), M
⌘

otherwise.
(3)

where � > 1 is a constant that puts the fuzzer in exploration
mode for ti that have only recently been discovered (i.e., s(i)
is low), and where µ is the mean number of fuzz exercising
a discovered path

µ =

P
i2S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz even
from fuzzing other test inputs are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
test inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with ↵(i)/� = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that ↵(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that ↵(0) = 21. When s(0) = 9
and ↵(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy ↵(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, ↵(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more test inputs on average (4G) while
F1 without a power schedule where the number of fuzz is
fixed at M = 216 would require one order of magnitude
more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power schedule
induces to fuzz ti proportional to the amount of fuzz f(i)
that exercises path i. The energy p(i) that this schedule
assigns to state i is computed as

p(i) = min

✓
↵(i)

�
· 2s(i)

f(i)
, M

◆
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and moer energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i)
that ti has been chosen from T , yet is also proportional to
the amount of fuzz f(i) that exercises path i.

↵(i) = min

✓
p(i)

�
· s(i)

f(i)
, M

◆
(5)

•

• Binutils (nm, objdump, strings, size, cxxfilt)
• it is a difficult subject because it takes program binaries as input.
• vulnerabilities exist in GDB, Valgrind, Gcov and other libbfd-based tools.
• attacker might modify a binary such that it becomes malicious upon analysis!

• e.g., during scan for malicious software or during reverse engineering.

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

Experiments

10

The quadratic schedule (QUAD) increases the energy of
a state i in a quadratic manner w.r.t. the number of times
s(i) that ti has been chosen from T , yet is also proportional
to the amount of fuzz f(i) that exercises path i. The energy
p(i) for state i is computed as

↵(i) = min

✓
p(i)

�
· s(i)2

f(i)
, M

◆
(6)

4.2 Search Strategies
An e�cient coverage-based greybox fuzzer prioritizes in-

puts that have not been fuzzed very often and inputs that
exercise low-frequency paths.

Prioritize small s(i)s(i)s(i). An e�cient fuzzer chooses as next
input ti 2 T such that the number of times s(i) that an
input has been chosen from the queue before is minimal. If
there are several such inputs, it chooses the first. However,
the greybox fuzzer may still decide to skip the choosen test
input, for instance if it is not a designated favourite. In that
case, the search strategy is applied again until the fuzzer
does not skip the input. E↵ectively, the queue is reordered
using the search strategy. Intuitively, the fuzzer can estab-
lish early whether or not path i is a low-frequency path and
whether it should invest more energy into fuzzing ti.

Prioritize small f(i)f(i)f(i). An e�cient fuzzer chooses as next
input ti 2 T such that the number of fuzz f(i) that exercises
path i is minimal. Again, if there are several such inputs,
it chooses the first. The fuzzer may skip the chosen test
input, for instance if it is not a designated favourite, until
finally an input is chosen according to the search strategy
and accepted for fuzzing. Intuitively, fuzzing an input that
exercises a low-frequency path might generate more inputs
exercising low-frequency paths.

5. EXPERIMENTAL SETUP

5.1 Implementation
AFL is a coverage-based greybox fuzzer that collects in-

formation on the basic block transitions that are exercised
by an input. The binary’s source code is not required [2, 22].
AFL implements certain strategies to select “interesting” in-
puts from the fuzz to add to the queue. We did not change
this functionality. AFL addresses path explosion by “buck-
eting” – the grouping of paths according to the number of
times all executed basic block transitions are exercised. We
did not change this functionality either. All changes were
made to perf score and choose next in Algorithm 1.

Changes for Power Schedule. We changed the computation
of the amount of fuzz p(i) that is generated for an input ti.
Firstly, AFL computes p(i) depending on execution time,
transition coverage, and creation time of ti. Essentially, if it
executes more quickly, covers more, and is generated later,
then the number of fuzz is greater. We maintain this eval-
uation in the various power schedules discussed above. Sec-
ondly, AFL executes the deterministic stage the first time ti

is fuzzed. Since our power schedules assign significantly less
energy for the first stage, our extension executes the deter-
ministic stage later when the assigned energy is equal to the
energy spent by deterministic fuzzing. Lastly, AFL might
initially compute a low value for p(i) and then dynamically
increase p(i) in the same run if “interesting” inputs are gen-
erated. Since our implementation controls p(i) via a power
schedule, we disabled this dynamic increase for AFL-FAST.

Changes for Search Strategy. We changed the order in
which AFL chooses the inputs from the queue and how AFL
designates “favourite” inputs that are e↵ectively exclusively
chosen from the queue. Firstly, for all executed basic block
transitions b, AFL chooses as favourite the fastest and small-
est inputs executing b. AFL-FAST first chooses the input
exercising b with the smallest number of time s(i) that it
has been chosen from the queue, and if there are several,
then the input that exercises a path exercised by the least
amount of fuzz f(i), and if there are still several, then the
fastest and smallest input. Secondly, AFL chooses the next
favourite input which follows the current input in the queue.
AFL-FAST chooses the next favourite input with the small-
est number of time s(i) that it has been chosen from the
queue and if there are several, it chooses that which exer-
cises a path exercised by the least amount of fuzz f(i).

Measure of #paths. AFL maintains a unique path inden-
tifier cksum for each input in the queue that is computed as
a hash over the shared memory region that has a bit set for
each basic block transition that is exercised by t. We imple-
mented a map {(cksum(i), f(i)) | ti 2 T} that keeps track of
the number of generated (and potentially discarded) inputs
for each exercised path.

Measure of #crashes. AFL defines unique crash as follows.
If two crashing inputs exercise a path in the same “bucket”,
then both inputs e↵ectively expose the same unique crash.

5.2 Infrastructure
We conducted our experiments on a 64-bit machine with

40 cores each running at 2.6 GHz (Intel R� Xeon R� E5-2600),
64GB of main memory, and Ubuntu 14.04 as host OS. We
ran each experiment at least eight times for six or 24 hours.
We ran 40 experiments simultanously, that is, one experi-
ment was run on one core. For each experiment, only one
seed input is provided — the empty file. Time is measured
using unix time stamps.

6. BINUTILS CASE STUDY

6.1 Vulnerabilities
We chose binutils as subject because it is non-trivial and

widely used for the analysis of program binaries,It consists
of several tools including nm, objdump, strings, size, and
cxxfilt. We zoom into some results by discussing one binu-
tils tool (i.e., nm) in more detail. Binutils is a di�cult subject
because the fuzzer needs to generate some approximation of
a program binary in order to exercise interesting behaviors
of the programs. We found a large number of serious vul-
nerabilities and several bugs (listed in Fig. 6).

Vulnerability Type
CVE-2016-2226 Exploitable Bu↵er Overflow
CVE-2016-4487 Invalid Write due to a Use-After-Free
CVE-2016-4488 Invalid Write due to a Use-After-Free
CVE-2016-4489 Invalid Write due to Integer Overflow
CVE-2016-4490 Write Access Violation
CVE-2016-4491 Various Stack Corruptions
CVE-2016-4492 Write Access Violation
CVE-2016-4493 Write Access Violation
CVE Requested Stack Corruption
Bug 1 Bu↵er Overflow (Invalid Read)
Bug 2 Bu↵er Overflow (Invalid Read)
Bug 3 Bu↵er Overflow (Invalid Read)

Figure 6: CVE-IDs and Exploitation Type

We found and

reported these vulns
.

AND use them for

our evaluati
on.

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

Power Schedules

10

●●
●
●
●●●
●
●●●●
●●●●
●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●

AFL−FAST

mean = 382

100

101

102

103

104

105

0 50 100 150 200 250 300 350 400 450 500
Path Index

N
um

be
r o

f T
es

t C
as

es

●●
●

●
●●

●●●●●●●●●●
●●●●●●●●●●
●●

mean = 1288

AFL

100

101

102

103

104

105

0 50 100 150 200 250 300 350 400 450 500
Path Index

N
um

be
r o

f T
es

t C
as

es

Figure 10: #Fuzz exercising a path (on a log-scale)
after running AFL for 10 minutes on the nm-tool.

Low-frequency Paths. In this paper, we argue that the
fuzzing time is better spent exploring low-frequency paths.
Firstly, we believe that low-frequency paths are more likely
to be exercised by valid inputs that stress di↵erent behav-
iors of the program. Secondly, less time is wasted fuzzing
high-frequency paths that are exercised by most fuzz any-
ways. Finally, it allows the coverage-based greybox fuzzer
to e�ciently discover more paths per generated input. As
we can see in Figure 10, indeed our heuristics generate more
fuzz for low-frequency paths and less fuzz for high-frequency
paths. In 10 minutes, AFL-Fast discovered twice as many
paths as AFL. For AFL-Fast only 10% of the discovered
(low-frequency) paths are exercised by just one input while
for AFL, 30% are exercised by just one input. The mean
amount of generated test inputs per path is about three
times higher for AFL-Fast. This clearly demonstrates the ef-
fectiveness of our heuristics in exploring a maximal number
of (low-frequency) paths while expending minimum energy.

6.3 Comparison of Power Schedules
Earlier, we introduced two constant and four monotonous

power schedules. AFL adopts a constant power schedule and
assigns a fairly high amount of energy. Basically, the same
input will get the same performance score the next time it
is fuzzed. This is the exploitation-based constant schedule
(exploit). To understand the impact of our choice to start
with a reduced fuzzing time per input, we also investigate an
exploration-based constant schedule (explore) that assigns a
fairly low and constant amount of energy. The monotonous
schedules increase the fuzzing time in a linear, quadratic, or
exponential manner. Specifically, AFL-Fast implements an
exponential schedule.

0

250

500

750

1000

1250

0 5 10 15 20 25
Time (in hours)

N
um

be
r o

f U
ni

qu
e

C
ra

sh
es Schedule

afl−fast

coe

exploit (afl)

explore

linear

quad

Figure 11: #Crashes over Time (Schedules).

Results. The exponential schedule that is implemented
in AFL-Fast outperforms all other schedules. The cut-o↵ ex-
ponential schedule (coe) performs only slightly worse than
AFL-Fast. After 24 hours, both schedules (fast and coe)
exposed 50% more unique crashes than the other three (lin-
ear, quad, and explore). Interestingly, the exploration-based
constant schedule (explore) starts o↵ by discovering a larger
number of crashes than any of the other schedules; it fuzzes
each input quickly and swiftly moves on to the next. How-
ever, this strategy does not pay o↵ in the longer run. After
24 hours, it performs worse than any of the other sched-
ules (except AFL’s exploitation-based constant schedule).
The quadratic schedule (quad) starts o↵ revealing a similar
number of unique crashes as AFL-Fast but at the end of
the 24 hour budget it performs comparably to the other two
(linear and explore).

6.4 Comparison of Search Strategies
Our search strategies prioritize inputs that have not been

fuzzed very often (small s(i)) and inputs that exercise low-
frequency paths (small f(i)). In the following, we investigate
two strategies targeting the implementation of perf score
and chooseNext in Algorithm 1. Strategy 1 designates
as favourites ti 2 T where s(i) and f(i) are small, and then
where execution time, transition coverage, and creation time
are minimal.11 Without Strategy 1, AFL-Fast (like AFL)
designates as favorites ti 2 T where execution time, tran-
sition coverage, and creation time are minimal. Strategy 2
chooses the next input ti from the queue where s(i) and
f(i) are minimal and ti is a favourite. Without Strategy 2
AFL-Fast (like AFL) chooses the next input from the queue
that is marked as favourite. All strategies are run with the
exponential power schedule.

0

250

500

750

1000

1250

0 5 10 15 20 25
Time (in hours)

N
um

be
r o

f U
ni

qu
e

C
ra

sh
es

Schedule
Both Strategies

No Strategy

Strategy 1

Strategy 2

Figure 12: #Crashes over Time (Search Strategies).

Results. The combination of both strategies is signifi-
cantly more e↵ective than any of the strategies individually.
Until about 12 hours the other strategies perform very simi-
larly. After 24 hours as individual strategy, strategy 1 which
changes how AFL designates the favourite is more e↵ective
than strategy 2 and no strategy in the long run. As indi-
vidual strategy, the strategy 2 which changes the order in
which test inputs are chosen from the queue seems to be not
e↵ective at all. It performs similarly compared to running
AFL-Fast without any strategies (comparable to AFL but
with exponential power schedule). However, after 24 hours,
AFL-Fast with both strategies exposes almost twice as many
unique crashes as AFL-Fast with no strategy or with only
strategy 1.

11For more details see Section 5.1.

•

• An independent evaluation by team Codejitsu found that  
AFLFast exposes errors in the benchmark binaries of the
DARPA Cyber Grand Challenge 19x faster than AFL.

• In the CGC finals, team Codejitsu placed 5th overall  
but placed 2nd in terms of Vulnerability Detection  
(i.e., 2nd highest evaluation score).

Coverage-based Greybox Fuzzing as Markov Chain

Presented by Marcel Böhme

AFLFast @ DARPA Cyber Grand
Challenge

12

Questions ?

Thank You !

