Security Protocols to Prevent Malpractices of Summative E-examinations

Kissan G. Gauns Dessai Goa University Prof. V. V. Kamat Research Guide, Goa University.

Outline

Summative Examination: Players and Organization

Summative examination form an integral part of any educational system.

Student

Three Roles: 1. Pre-Conduct

Examination Authority

Three Phases:

2. Conduct

Examiner

3. Post-Conduct

Summative Examination: Crucial Assets

- Question Paper
- Answers-scripts

Threats...

- Question paper leakage
- Candidate cheating
- Bribed, corrupted or unfair examiners
- Dishonest/untrusted examination authority
- Outside attackers

Threats

95	
J.	while area wedwork is use in what weatherfuld
	assa and the weekby big company an
	dialial for nederandian at decuels and and
	in explorative some banks
	an all the second second second
-20-1	CTP SPOP PRART IS ON MEDIS & BERGHO FRETT
	and the second and the second from the second second
	William I have a second south of the second second
	There we well a series
13. 14	an builder allower menne it - Parlan
1	the based converted the state person
h	Note it came I had the inter the
1	Le bail application and publication apple and the
-	to the loust is
11	a bail and then tand win decide to give
01	telleavie of the board and be
-	Personal Thisting and balance
1 15	1
And I am	the precavery encons is some date get
05.	I of deleter todo doing was approved by
1 pts	By deal 1 Archast in cota the monthing that
dat	Be pathing is lacased if sale all sale
14 1	an actioner the with it is and less
2 lest	the state of the state of the state of
2 Jaca	en and is suited in completes it not any
GAUN	in comfiden in a but it is also sourced in all
diwi	its also such as Nother were a state
lusher	o bala and delated
1000	Person
1.600	Accorder that dots have been black that
Said Oak	ar an and

AL EL	O Him Ann. Stillen	
	E Maunting	The second second
a	Const Speating means one person sending a Provide alters account it is one of the of costate committed, by strangers blan-sultable difference	
HIII I		A New Acres in the
1		

Typical Answers-scripts Delivery Process

Research Problem

Bind the **unique question paper** provided to the student with the **answer-script** produced by the student unambiguously s.t.

Security Requirements

Sr. No.	Requirement	Reason
1.	Ensure that at no stage shall the identity of the examiner be available to the student.	To prevent any attempt of the students from approaching examiners with illicit demands or threats.
2.	Ensure that at no stage shall the students identity be available to the examiner.	To prevent any dishonest acts of examiners, such as unfair evaluation, bribe demands etc.
3.	Ensure that at no stage shall the students answers-scripts be available to the examination authority.	Examination authority, do not have any role to play in the answers-script evaluation

Model

- Processes in the applied π calculus
- Annotated using events
- Privacy properties as observational equivalence between instances
- Automatic verification using ProVerif

Glossary of Notations

Glossary of notations

Notation	Description
$K_{A_i}, K_{A_i}^{-1}$	Public key and private key of an entity A_i
$K_{A_i}(m)$	Message m is encrypted using public key of entity A_i
$(c)K_{A_i}^{-1}$	Cipher text c is decrypted using private key of entity A_i

Protocol for Answer-scripts Delivery

<mark>12</mark>

Protocol for Answer-scripts Delivery using Hybrid Cryptosystem

- 2: Initially, B disguises the public key of examiner (X) as follows:
 - 2.1: First, B select the public key K_X of X and choose a random number (r) to disguise the public key K_X as $(K_X * r)$.
 - 2.2: *B* encrypt the disguised public key $(K_X * r)$ of X using public key K_{A_i} of A_i as $\{(K_X * r)\}K_{A_i}$.
 - 2.3: *B* compute message digest of $(K_X * r)$ and sign it using private key K_B^{-1} of *B*.
 - 2.4: *B* pairs disguised public key and message digest created in step 2.2 and 2.3 and send it to A_i.

Message 2: $B \rightarrow A_i$: $\{N_B, (K_X * r)\}K_{A_i}, \{\mathcal{H}(K_X * r)\}K_B^{-1}$

Reason: Sending blind public key of (X) to (A) serves two crucial objectives: It aids in hiding the identity of (X) from students (A) and assists in hiding the student answer-scripts from examination authority (B).

Protocol for Answer-scripts Delivery using Hybrid Cryptosystem

- 3: When A_i receives message 2 from B:
 - 3.1: A_i decrypts message 2 to read $(K_X * r)$ and $\{\mathcal{H}(K_X * r)\}$.
 - 3.2: A_i computes hash of $(K_X * r)$ and compares it with the message digest $\{\mathcal{H}(K_X * r)\}$ received from *B*.
 - 3.3: If both hash values match protocol proceeds further.
 - 3.4: Subsequently, A_i produce answer-script AS_{A_i} and compute the message digest $\mathcal{H}(AS_{A_i})$ of AS_{A_i} .
 - 3.5: A_i generates a secret key S_{A_i} .
 - 3.6: A_i encrypts AS_{A_i} using its secret key S_{A_i} and pairs the secret key S_{A_i} and

 $\mathcal{H}(S_{A_i})$ using disguised public key of examiner (X) send it to *B*. **Message 3:** $A_i \rightarrow B$: {{ $N_{A_i}, QP_{A_i}, \mathcal{H}(AS_{A_i}), \{HQPAS_{A_i}\}K_{A_i}^{-1}\}K_B, \{AS_{A_i}\}S_{A_i}, \{S_{A_i}, \mathcal{H}(S_{A_i})\}(K_X * r)$ } **Reason:** By using the disguised public key the examination authority(*B*) is unaware of the answer-script AS_{A_i} of the student A_i (Examination authority only knows $H(AS_i)$.

Privacy Properties

- **Question Indistinguishability**: No premature information about the questions is leaked.
- Answer-script Secrecy Answer-scripts are released only to the examiner for evaluation
- Anonymous Marking: An examiner cannot link an answer to a candidate.
- Anonymous Examiner: A candidate cannot know which examiner graded his copy.

Equational Theory

Equational Theory(\approx)	
fst(pair(x,y)) = x	snd(pair(x,y)) = y
$adec(aenc(m, K_A), K_A^{-1}) = m$	$checksign(sign(m, K_A^{-1}), K_A) = m$
unblind(blind(m, rbf), rbf) = m	$unblind(sign(blind(m,rbf),K_A^{-1}),rbf)=sign(m,K_A^{-1})$
unblind(aenc(m, bli	$nd(K_E, rbf)), rbf) = aenc(m, K_E)$

Associativity & Anonymity(1/5)

Inseparable bonding between Question Paper and Answer-Script

Associativity & Anonymity(2/5)

Question paper & Answer-script Associativity

An examination system with student process A (QP, AS, id) and examination authority process B offers question paper & answer-script associativity, if it is possible to unambiguously distinguish when a student A_1 produce answer-script AS_{A_2} corresponding to the received question paper QP_{A_1} from the case where examination authority/student claim of producing AS_{A_2} corresponding to altogether different question paper QP_{A_2} .

 $v\tilde{n}.(A\{QP_{A_1}/x, AS_{A_2}/y, A_1/z\}|B) \not\approx_l v\tilde{n}.(A\{QP_{A_2}/x, AS_{A_2}/y, A_1/z\}|B)$ (1)

QP and **AS** Associativity

Student A1

Student A2

QP and **AS** Associativity

 $\varphi_0 = \{pk(B)/v1\} |\{pk(A_i)/v2\} |\{pk(E_i)/v3\}| \\ \{hexKey = hide(pk(E_i), rf)\} |\{enc(QP_{Ai}, A_i)\} |\{enc(QP_{Ai},$

Initial knowledge of the communicating entities.

 $|i=1..n\},$

 $\varphi_1 = \varphi_0 | \{ QP_{A1}/x, AS_{A2}/y \},$ Question paper answer-script pair submitted by the dishonest student.

 $\varphi_2 = \{QP_{A2}/x, AS_{A2}/y\},\$ Claim of the dishonest student after the completion of the examination $\varphi_k = \{\varphi_{k-1}\}|\{sign(hash(hQP_{A1}hAS_{A2}), ssecST)\}|$

 $\{hash(AS_{A2})|hash(hQP_{A1}hAS_{A2})|$

 $\{enc((AS_{A2}, hash(QP_{A1})), hexKey)\}$

Knowledge of the examination authority/examiners

 $\{enc((AS_{A2}, hash(QP_{A1})), pk(E_i)\},\$

 $\varphi_{\delta} = \varphi_n | \{ dec(QP_{A1}, B) | \{ dec(AS_{A2}, E_i) \} \}$

Final decryption of the received data.

QP and **AS** Associativity

- Dual signature ds = hash(hQPA1 hASA2) is signed by the student entity
- New claim of student is ds' = hash(hQPA2 hASA2)
- It is unlikely that the two distinct question papers map to the same hash value

 $\exists QP_{A_2} \text{ s.t. } \mathcal{H}(QP_{A_1}) = \mathcal{H}(QP_{A_2}) \text{ and } \exists ds = ds'$

It is unlikely that the two distinct question papers map to the same hash value since $QP_{A_1} \cap QP_{A_2} \neq \emptyset$

Since $(ds = cds)\phi$ and $(ds' \neq cds)\phi 1$, $\phi \not\approx_s \phi 1$.

i.e., two frames ϕ and ϕ 1 are statically not equivalent. This means that ϕ and ϕ 1 are distinguishable to the dispute handling authority.

This holds true for any frame ϕ_i for i > 0.

Since, dispute handling authority is successful in distinguishing between original pair and altered pair, i.e, $P[QP_{A_1}/q_1, ASA_2/a_1] \not\approx P[QPA_2/q_1, ASA_2/a_1]$, we can conclude that ADAA protocol ensures Unambiguous Associativity between given QP and AS pair.

Associativity & Anonymity(3/5)

Answer-script Secrecy

An examination system with student process A (QP, AS, id) and examination authority process B offers an answer-script secrecy, if it is not possible for the examination authority to distinguish the answer-scripts received.

$$v\tilde{n}.(A\{AS_{A_1}/x, AS_{A_2}/y\}|B) \approx_l v\tilde{n}.(A\{AS_{A_2}/x, AS_{A_1}/y\}|B)$$
 (2)

Associativity & Anonymity(4/5)

Answer-script Anonymity

An examination system with examination authority process B (QP, AS, pseudo_id) and examiner process X, ensures answer-script anonymity, if it is not possible for the examiners to find the author of the answer-scripts from the received answerscripts, i.e., student A_1 producing an answer-script AS_{A_1} is indistinguishable from student A_2 producing an answer-script AS_{A_2} .

 $\tilde{vn}.(B\{\{AS_{A_1}, pid_{A_1}\}, \{AS_{A_2}, pid_{A_2}\}\}|X) \approx_l \tilde{vn}.(B\{\{AS_{A_2}, pid_{A_1}\}, \{AS_{A_1}, pid_{A_2}\}\}|X)$ (3)

References – E-Examination Security

1.	A. Huszti, A. Petho, " A secure electronic exam system ", Publicationes Mathematicae Debrecen 77 (3-4) (2010) 299-312.
2.	A. Shafarenko, D. Barsky, "A secure examination system with multi-mode input on the world-wide web": , IEEE, 2000.
3.	E. R. Weippl, "Security in e-learning", Vol. 16, Springer Science & Business Media, 2005.
4.	J. Castella-Roca, J. Herrera-Joancomarti, A. Dorca-Josa, "A secure e-exam management system" , in: The First International Conference on Availability, Reliability and Security, 2006. ARES 2006., IEEE, 2006.
5.	J. Dreier, R. Giustolisi, A. Kassem, P. Lafourcade, G. Lenzini, "A framework for analyzing veriability in traditional and electronic exams" , in: Information Security Practice and Experience, Springer, 2015, pp.514-529.
6.	K. M. Apampa, G. Wills, D. Argles, "An approach to presence verification in summative e-assessment security", in: Information Society (i-Society), 2010 International Conference on, IEEE, 2010, pp. 647-651.

References – Formal Model

Armando, Alessandro, Roberto Carbone, and Luca Compagna. "LTL model

- 1. **checking for security protocols.**" *Journal of Applied Non-Classical Logics* 19.4 (2009): 403-429.
- 2. Basin, David, Cas Cremers, and Catherine Meadows. "Model checking security protocols." *Handbook of Model Checking* (2011).

 Basin, David, and Cas Cremers. "Modeling and analyzing security in the
presence of compromising adversaries." *Computer Security–ESORICS* 2010. Springer Berlin Heidelberg, 2010. 340-356.

Benerecetti, Massimo, and Fausto Giunchiglia. "Model checking security

4. **protocols using a logic of belief.**" *Tools and Algorithms for the Construction and Analysis of Systems.* Springer Berlin Heidelberg, 2000. 519-534.

Kremer, Steve, and Mark Ryan. "Analysis of an electronic voting protocol

5. **in the applied pi calculus.**" *Programming Languages and Systems*. Springer Berlin Heidelberg, 2005. 186-200.

T. Chothia. "Modelling and Analysis of Security Protocols", Lecture Notes,

6. School of Computer Science, University of Birmigham, available at:

References – Applied Pi Calculus (Applications)

1.	Backes, Michael, Catalin Hritcu, and Matteo Maffei. "Automated verification of remote electronic voting protocols in the applied pi-calculus." <i>Computer Security Foundations Symposium, 2008. CSF'08. IEEE 21st.</i> IEEE.
2	Dong, Naipeng, Hugo Jonker, and Jun Pang. "Analysis of a receipt-free auction protocol in the applied pi calculus." <i>Formal Aspects of Security and Trust.</i> Springer Berlin Heidelberg, 2011. 223-238
3.	Kremer, Steve, and Mark Ryan. "Analysis of an electronic voting protocol in the applied pi calculus." Programming Languages and Systems. Springer Berlin Heidelberg, 2005. 186-200.
4.	Luo, Zhengqin, et al. "Analyzing an electronic cash protocol using applied pi calculus." <i>Applied Cryptography and Network Security</i> . Springer Berlin Heidelberg, 2007.
5.	Meng, Bo. "Formal analysis of key properties in the internet voting protocol using applied pi calculus ." Information Technology Journal 7.8 (2008): 1130-1140.

References – Reachability and Indistinguishability

1.	Abadi, Martín, and Véronique Cortier. "Deciding knowledge in security protocols under equational theories." <i>Theoretical Computer Science</i> 367. (2006): 2-32.
2.	Abadi, Martin. "Secrecy by typing in security protocols." Theoretical Aspects of Computer Software. Springer Berlin Heidelberg, 1997.
3.	Amadio, Roberto M., and Denis Lugiez. "On the reachability problem in cryptographic protocols." <i>CONCUR 2000—Concurrency Theory</i> . Springer Berlin Heidelberg, 2000 . 380-394.
4.	Basin, David, Sebastian Mödersheim, and L. Vigano. "An on-the-fly model- checker for security protocol analysis." Springer, Berlin Heidelberg, 2003.
5.	Baudet, Mathieu. "Deciding security of protocols against off-line guessing attacks." Proceedings of the 12th ACM conference on Computer and communications security. ACM, 2005.
6.	Blanchet, Bruno. "Automatic proof of strong secrecy for security protocols." Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on. IEEE, 2004.