Knowledge transfer and information leakage in protocols

Abdullah Abdul Khadir, Madhavan Mukund, S P Suresh Chennai Mathematical Institute and UMI RELAX {abdullah,madhavan,spsuresh}@cmi.ac.in

> Formal Methods Update Meeting 2018 Goa, India July 20, 2018

Abdullah, Madhavan, Suresh

Knowledge transfer and information leakage in protocols FM Update 2018 1 / 16

Information exchange in protocols

- Protocols
 - Structured conversation to effect information exchange
 - Informative: Transmit relevant information to trusted partner
 - Safe: Do not leak confidential data to eavesdropper(s)
- Full safety not always possible. e.g. rejecting a password
- Quantify information leakage

Studying information leakage

- Qualitative: Non-interference and allied notions / refinements
 - Low outputs not affected by high inputs
- Quantitative: Measure information leakage based on entropy
- Our Approach: Discrete measurement of information leakage

SADI problems

- Four agents A, B, C and E, with E being the eavesdropper
- The deal

 $\begin{array}{lll} A & 0,1 \\ B & 2,3,4 \\ C & 5,6,7,8 \end{array}$

• Find a sequence of (truthful) announcements that help A, B, C learn the whole deal, while E does not know the whole deal

- A one-round protocol
 - A My hand is 01 or 08 or 18

- A one-round protocol
 - A My hand is 01 or 08 or 18
 - **B** Pass

- A one-round protocol
 - A My hand is 01 or 08 or 18
 - **B** Pass
 - C My hand is 0234 or 1237 or 5678

- A one-round protocol
 - A My hand is 01 or 08 or 18
 - **B** Pass
 - C My hand is 0234 or 1237 or 5678

What is known at the end?

- A one-round protocol
 - A My hand is 01 or 08 or 18
 - **B** Pass
 - C My hand is 0234 or 1237 or 5678

- What is known at the end?
- Can this be promoted to a protocol?

- A one-round protocol
 - A My hand is 01 or 08 or 18
 - **B** Pass
 - C My hand is 0234 or 1237 or 5678

- What is known at the end?
- Can this be promoted to a protocol?
- Yes!

5/16

• Another sequence

- A My hand is 01 or 12 or 23
- B My hand is 234 or 056 or 178
- C Pass
- Informative, but is it safe??

• Another sequence

- A My hand is 01 or 12 or 23
- B My hand is 234 or 056 or 178
- C Pass
- Informative, but is it safe??
- All deals compatible with the announcement sequence
 - (01, 234, 5678)
 - (12,056,3478)
 - (23,056,1478)
 - (23, 178, 0456)

• Another sequence

- A My hand is 01 or 12 or 23
- B My hand is 234 or 056 or 178
- C Pass
- Informative, but is it safe??
- All deals compatible with the announcement sequence
 - (01, 234, 5678)
 - (12,056,3478)
 - (23,056,1478)
 - (23, 178, 0456)

• This announcement sequence does not work in the other three cases

• Another sequence

- A My hand is 01 or 12 or 23
- B My hand is 234 or 056 or 178
- C Pass
- Informative, but is it safe??
- All deals compatible with the announcement sequence
 - (01, 234, 5678)
 - (12,056,3478)
 - (23,056,1478)
 - (23, 178, 0456)
- This announcement sequence does not work in the other three cases
- The deal is leaked!

• Another sequence

- A My hand is 01 or 12 or 23
- B My hand is 234 or 056 or 178
- C Pass
- Informative, but is it safe??
- All deals compatible with the announcement sequence
 - (01, 234, 5678)
 - (12,056,3478)
 - (23,056,1478)
 - (23, 178, 0456)
- This announcement sequence does not work in the other three cases
- The deal is leaked!

- Another informative, safe sequence
 - A My hand is 01 or 02 or 03 or 12 or 13 or 23

- Another informative, safe sequence
 - A My hand is 01 or 02 or 03 or 12 or 13 or 23
 - B My hand is 456 or 678 or 158 or 378 or 236 or 014

- Another informative, safe sequence
 - A My hand is 01 or 02 or 03 or 12 or 13 or 23
 - B My hand is 456 or 678 or 158 or 378 or 236 or 014
 - C My hand is 2378 or 1345 or 2467 or 0456 or 4578 or 5678

- Another informative, safe sequence
 - A My hand is 01 or 02 or 03 or 12 or 13 or 23
 - B My hand is 456 or 678 or 158 or 378 or 236 or 014
 - C My hand is 2378 or 1345 or 2467 or 0456 or 4578 or 5678
- Let π_2 be a protocol obtained from above.

- Another informative, safe sequence
 - A My hand is 01 or 02 or 03 or 12 or 13 or 23
 - B My hand is 456 or 678 or 158 or 378 or 236 or 014
 - C My hand is 2378 or 1345 or 2467 or 0456 or 4578 or 5678
- Let π_2 be a protocol obtained from above.
- Recall the previous run (and let a protocol obtained from it be π_1)
 - A My hand is 01 or 08 or 18
 - B Pass
 - C My hand is 0234 or 1237 or 5678

- Another informative, safe sequence
 - A My hand is 01 or 02 or 03 or 12 or 13 or 23
 - B My hand is 456 or 678 or 158 or 378 or 236 or 014
 - C My hand is 2378 or 1345 or 2467 or 0456 or 4578 or 5678
- Let π_2 be a protocol obtained from above.
- Recall the previous run (and let a protocol obtained from it be π_1)
 - A My hand is 01 or 08 or 18
 - *B* Pass
 - C My hand is 0234 or 1237 or 5678
- Which is better, π_1 or π_2 ?

- Another informative, safe sequence
 - A My hand is 01 or 02 or 03 or 12 or 13 or 23
 - B My hand is 456 or 678 or 158 or 378 or 236 or 014
 - C My hand is 2378 or 1345 or 2467 or 0456 or 4578 or 5678
- Let π_2 be a protocol obtained from above.
- Recall the previous run (and let a protocol obtained from it be π_1)
 - A My hand is 01 or 08 or 18
 - B Pass
 - C My hand is 0234 or 1237 or 5678
- Which is better, π_1 or π_2 ?
- Why?

Our work

- Represent the information state of agents using atomic propositions
- Atomic propositions for agents p, q $(p \neq q)$ and card c
 - $K_{pq}(c)$: p knows that q has card c
 - $K_{pNq}(c)$: p knows that q does not have c.
- Valuations for agent p assign \top or \bot for every proposition.
- Natural constraints on valuations. For example

 $\forall q, c: \text{ either } v \not\models K_{pq}(c) \text{ or } v \not\models K_{pNq}(c)$

Measuring knowledge for runs

- Initial formula representing constraints on valuations
- Each announcement is a DNF formula
- Announcement sequence is a conjunction of these (ϕ)
- Use a SAT solver (Z3) to compute all hands compatible with ϕ
- Collect statistics on this final state
- E.g. if $\neg K_{pq}(c) \land \phi$ is unsat, it means that p knows that q has c
- Use this to search for informative and safe runs
- Coming up with a protocol harder problem

Abdullah, Madhavan, Suresh

Knowledge transfer and information leakage in protocols FM Update 2018 9 / 16

Experiment Setup

In order to evaluate the tool we built, we

- Identified the following parameters for generating a run,
 - The size of the hand in each announcement
 - The number of disjuncts in each announcement
 - The number of announcements
- Fixed the initial distribution type as $\langle 4, 4, 4 \rangle$).
- Generate a set of runs for specific values.
- Compute statistics for each set of runs.

Results (for three disjuncts, two rounds)

Cards Revealed in \langle 4,4,4,0 \rangle

Questions?

Protocols

- For deal d, let d_p denote the hand of agent p.
- An announcement is a disjunction of hands
- A protocol π is a function that
 - assigns a subset of announcements to a run ρ for deal d.
 - is turn-based : agents take turns in making announcements.
- Further, $\pi(d,
 ho)$ is :
 - (truthful) Any announcement made by agent p must be true.

for all $ann \in \pi(d, \rho), d_p \in ann$

• (view-based) Same response if hand and sequence are the same,

$$(d_p = f_p) \implies (\pi(d, \rho) = \pi(f, \rho))$$

Informativity

Definition (Informative run)

Run (d, ρ) of protocol π is informative for agent p if d is the only deal compatible with ρ and p's hand Formally: For every execution (f, ρ) of π , $(d \neq f) \Longrightarrow (d_p \neq f_p)$

Definition (Informative Protocols)

A protocol π is

- weakly informative (WI): if every (maximal) run of π is informative for some agent.
- **informative (I):** if every (maximal) run of π is informative for every agent.

Safety of cards

A card is safe if its status is not known to eavesdropper, E

Definition (Safety of cards)

A run (d, ρ) of a protocol π is **safe** for the card c, if for any agent p, if $c \in d_p$, then, there is another run (f, ρ) of π such that $c \notin f_p$.

Definition (Strong Safety of cards)

A run (d, ρ) of a protocol π is **strongly safe** for the card c if for every agent p, there are two runs $(f, \rho), (g, \rho)$ of π such that $c \in f_p$ and $c \notin g_p$.

Safety of protocols

Definition (Safety of Protocols)

- A protocol π is
 - **deal safe:** if every run of π is safe for some card c.
 - *p*-safe (for *p*): if every run (d, ρ) of π is safe for all cards in d_p .
 - safe: if every execution of π is safe for every card c.
 - strongly safe: if every execution of π is strongly safe for every card c.