Knowledge transfer and information leakage in protocols

Abdullah Abdul Khadir, Madhavan Mukund, **S P Suresh** Chennai Mathematical Institute {abdullah,madhavan,**spsuresh**}@cmi.ac.in

Formal Methods Update Meeting IIT Mandi July 18, 2017

Abdullah, Madhavan, Suresh

Protocols

- Protocols
 - Structured conversation to effect information exchange

- Protocols
 - Structured conversation to effect information exchange
 - Informative: Transmit relevant information to trusted partner

- Protocols
 - Structured conversation to effect information exchange
 - Informative: Transmit relevant information to trusted partner
 - Safe: Do not leak confidential data to eavesdropper(s)

- Protocols
 - Structured conversation to effect information exchange
 - Informative: Transmit relevant information to trusted partner
 - Safe: Do not leak confidential data to eavesdropper(s)
- Full safety not always possible. e.g. rejecting a password

- Protocols
 - Structured conversation to effect information exchange
 - Informative: Transmit relevant information to trusted partner
 - Safe: Do not leak confidential data to eavesdropper(s)
- Full safety not always possible. e.g. rejecting a password
- Quantify information leakage

Studying information leakage

• Qualitative: Non-interference and allied notions / refinements

Studying information leakage

- Qualitative: Non-interference and allied notions / refinements
 - Low outputs not affected by high inputs

Studying information leakage

- Qualitative: Non-interference and allied notions / refinements
 - Low outputs not affected by high inputs
- Quantitative: Measure information leakage based on entropy

• Discrete measurement of information leakage

- Discrete measurement of information leakage
- Information consists of propositional facts

- Discrete measurement of information leakage
- Information consists of propositional facts
- Represents knowledge to be shared among agents

- Discrete measurement of information leakage
- Information consists of propositional facts
- · Represents knowledge to be shared among agents
- Eavesdropper has no knowledge initially

- Discrete measurement of information leakage
- Information consists of propositional facts
- · Represents knowledge to be shared among agents
- Eavesdropper has no knowledge initially
- As messages are exchanged, agents learn more facts

- Discrete measurement of information leakage
- Information consists of propositional facts
- · Represents knowledge to be shared among agents
- Eavesdropper has no knowledge initially
- As messages are exchanged, agents learn more facts
- Measure how much eavesdropper knows at the end

- Discrete measurement of information leakage
- Information consists of propositional facts
- Represents knowledge to be shared among agents
- Eavesdropper has no knowledge initially
- As messages are exchanged, agents learn more facts
- Measure how much eavesdropper knows at the end
- Check if honest agents know all they ought to know

SADI problems

• There are four agents A, B, C and D, with D being the eavesdropper

SADI problems

- There are four agents A, B, C and D, with D being the eavesdropper
- The deal

A 0, 1 B 2, 3, 4 C 5, 6, 7, 8

SADI problems

- There are four agents A, B, C and D, with D being the eavesdropper
- The deal

A 0, 1 B 2, 3, 4 C 5, 6, 7, 8

• Find a sequence of (truthful) announcements that help them learn the whole deal, while **D** does not know the whole deal

- A one-round protocol
 - A My hand is **01** or **08** or **18**
 - **B** Pass
 - C My hand is 0234 or 1237 or 5678

- A one-round protocol
 - A My hand is **01** or **08** or **18**
 - **B** Pass
 - C My hand is **0234** or **1237** or **5678**
- What is known at the end?

- A one-round protocol
 - A My hand is o1 or o8 or 18B Pass
 - C My hand is **0234** or **1237** or **5678**
- What is known at the end?
- Can this be promoted to a protocol?

- A one-round protocol
 - A My hand is **01** or **08** or **18**
 - **B** Pass
 - C My hand is **0234** or **1237** or **5678**
- What is known at the end?
- Can this be promoted to a protocol?
- Yes!

- Another sequence
 - A My hand is **01** or **12** or **23**
 - *B* My hand is 234 or 056 or 178
 - C Pass

- Another sequence
 - *A* My hand is **01** or **12** or **23** *B* My hand is **234** or **056** or **178** *C* Pass
- Informative, but is it safe??

- Another sequence
 - *A* My hand is o1 or 12 or 23 *B* My hand is 234 or 056 or 178
 - **C** Pass
- Informative, but is it safe??
- Other deals compatible with the announcement sequence

- Another sequence
 - A My hand is **01** or **12** or **23**
 - *B* My hand is 234 or 056 or 178
 - C Pass
- Informative, but is it safe??
- Other deals compatible with the announcement sequence
 - · (12,056,3478)

- Another sequence
 - A My hand is **01** or **12** or **23**
 - B My hand is 234 or 056 or 178
 - C Pass
- Informative, but is it safe??
- Other deals compatible with the announcement sequence
 - · (12,056,3478)
 - · (23, 178, 0456)

- Another sequence
 - A My hand is **01** or **12** or **23**
 - B My hand is 234 or 056 or 178
 - C Pass
- Informative, but is it safe??
- Other deals compatible with the announcement sequence
 - · (12,056,3478)
 - · (23, 178, 0456)
 - · (23,056,1478)

- Another sequence
 - A My hand is **01** or **12** or **23**
 - B My hand is 234 or 056 or 178
 - C Pass
- Informative, but is it safe??
- Other deals compatible with the announcement sequence
 - · (12,056,3478)
 - · (23, 178, 0456)
 - · (23,056,1478)
- This announcement sequence does not work in those cases

- Another sequence
 - A My hand is **01** or **12** or **23**
 - B My hand is 234 or 056 or 178
 - **C** Pass
- Informative, but is it safe??
- Other deals compatible with the announcement sequence
 - · (12,056,3478)
 - · (23, 178, 0456)
 - · (23,056,1478)
- This announcement sequence does not work in those cases
- The deal is leaked!

Protocols

Definition (Protocols)

A **protocol** (for a fixed deal type) is a function π assigning to every deal **H** of that type, and every run ρ a non-empty set of actions $\pi(\mathbf{H}, \rho)$ such that:

Protocols

Definition (Protocols)

A **protocol** (for a fixed deal type) is a function π assigning to every deal **H** of that type, and every run ρ a non-empty set of actions $\pi(\mathbf{H}, \rho)$ such that:

• $H_p \in a$ for all $a \in \pi(H, \rho)$ (truthful)

Protocols

Definition (Protocols)

A **protocol** (for a fixed deal type) is a function π assigning to every deal **H** of that type, and every run ρ a non-empty set of actions $\pi(\mathbf{H}, \rho)$ such that:

- $H_p \in a$ for all $a \in \pi(H, \rho)$ (truthful)
- if $\mathbf{H} \sim_{p} \mathbf{H}'$, then $\pi(\mathbf{H}, \rho) = \pi(\mathbf{H}', \rho)$ (view-based)

Informativity of protocols

Definition (Informativity)

A run (\mathbf{H}, ρ) of a protocol π is informative for an agent \mathbf{p} if there is no execution (\mathbf{H}', ρ) of π with $\mathbf{H} \sim_{\mathbf{p}} \mathbf{H}'$ and $\mathbf{H} \neq \mathbf{H}'$. A protocol π is

Informativity of protocols

Definition (Informativity)

A run (\mathbf{H}, ρ) of a protocol π is informative for an agent \mathbf{p} if there is no execution (\mathbf{H}', ρ) of π with $\mathbf{H} \sim_{\mathbf{p}} \mathbf{H}'$ and $\mathbf{H} \neq \mathbf{H}'$. A protocol π is

• weakly informative (WI): if every run of π is informative for some agent.

Informativity of protocols

Definition (Informativity)

A run (\mathbf{H}, ρ) of a protocol π is informative for an agent \mathbf{p} if there is no execution (\mathbf{H}', ρ) of π with $\mathbf{H} \sim_{\mathbf{p}} \mathbf{H}'$ and $\mathbf{H} \neq \mathbf{H}'$. A protocol π is

- weakly informative (WI): if every run of π is informative for some agent.
- **informative (I):** if every run of π is informative for every agent.

Safety of cards

Definition (Safety of cards)

A run (\mathbf{H}, ρ) of a protocol π is **safe** for the card \mathbf{c} if for every agent \mathbf{p} , there is another run (\mathbf{G}, ρ) of π such that $\mathbf{c} \notin \mathbf{G}_{\mathbf{p}}$.

A run (\mathbf{H}, ρ) of a protocol π is **strongly safe** for the card \mathfrak{c} if for every agent p, there are two runs $(\mathbf{F}, \rho), (\mathbf{G}, \rho)$ of π such that $\mathfrak{c} \in \mathbf{F}_p$ and $\mathfrak{c} \notin \mathbf{G}_p$.

Definition (Safety of Protocols) A protocol π is

Definition (Safety of Protocols)

A protocol π is

• **deal safe:** if every run of π is safe for some card c.

Definition (Safety of Protocols)

A protocol π is

- **deal safe:** if every run of π is safe for some card c.
- *p*-safe (for an agent *p*): if every run (H, ρ) of π is safe for all cards in H_p .

Definition (Safety of Protocols)

A protocol π is

- **deal safe:** if every run of π is safe for some card c.
- *p*-safe (for an agent *p*): if every run (H, ρ) of π is safe for all cards in H_p .
- **safe:** if every execution of π is safe for every card c.

Definition (Safety of Protocols)

A protocol π is

- **deal safe:** if every run of π is safe for some card c.
- *p***-safe (for an agent p):** if every run (H, ρ) of π is safe for all cards in H_p .
- **safe:** if every execution of π is safe for every card c.
- **strongly safe:** if every execution of π is strongly safe for every card c.

• Represent the information state of agents as a set of valuations

- Represent the information state of agents as a set of valuations
- Valuations for agent p

 $\nu: \{K_{pq}(c), K_{pNq}(c) \mid b \text{ an agent}, q \neq p, c \text{ a card}\} \rightarrow \{\top, \bot\}$

- Represent the information state of agents as a set of valuations
- Valuations for agent p

 $\nu: \{K_{pq}(c), K_{pNq}(c) \mid b \text{ an agent}, q \neq p, c \text{ a card}\} \rightarrow \{\top, \bot\}$

• $v(K_{pq}(c)) = \top$ for all v in a's state means a knows that b has card c

- Represent the information state of agents as a set of valuations
- Valuations for agent p

 $\nu: \{K_{pq}(c), K_{pNq}(c) \mid b \text{ an agent}, q \neq p, c \text{ a card}\} \rightarrow \{\top, \bot\}$

- $v(K_{pq}(c)) = \top$ for all v in a's state means a knows that b has card c
- $v(K_{pNq}(c)) = \top$ for all v in a's state means a knows that b does not have card c

- Represent the information state of agents as a set of valuations
- Valuations for agent p

 $\nu: \{K_{pq}(c), K_{pNq}(c) \mid b \text{ an agent}, q \neq p, c \text{ a card}\} \rightarrow \{\top, \bot\}$

- $\nu(K_{pq}(c)) = \top$ for all ν in *a*'s state means *a* knows that *b* has card *c*
- $\nu(K_{pNq}(c)) = \top$ for all ν in *a*'s state means *a* knows that *b* does not have card *c*
- It is possible that $\nu(K_{pq}(c)) = \bot$ and $\nu(K_{pNq}(c)) = \bot$ for some ν

- Represent the information state of agents as a set of valuations
- Valuations for agent p

 $\nu: \{K_{pq}(c), K_{pNq}(c) \mid b \text{ an agent}, q \neq p, c \text{ a card}\} \rightarrow \{\top, \bot\}$

- $\nu(K_{pq}(c)) = \top$ for all ν in *a*'s state means *a* knows that *b* has card *c*
- $\nu(K_{pNq}(c)) = \top$ for all ν in *a*'s state means *a* knows that *b* does not have card *c*
- It is possible that $\nu(K_{pq}(c)) = \bot$ and $\nu(K_{pNq}(c)) = \bot$ for some ν
- Natural constraints on valuations. For example

 $\forall q, c :$ either $\nu \notin K_{pq}(c)$ or $\nu \notin K_{pNq}(c)$

Abdullah, Madhavan, Suresh

• Initial formula representing constraints on valuations

- Initial formula representing constraints on valuations
- Each announcement is a DNF formula

- Initial formula representing constraints on valuations
- Each announcement is a DNF formula
- Announcement sequence is a conjunction of these

- Initial formula representing constraints on valuations
- Each announcement is a DNF formula
- Announcement sequence is a conjunction of these
- Use a SAT solver (Z₃) to compute all hands compatible with this formula φ

- Initial formula representing constraints on valuations
- Each announcement is a DNF formula
- Announcement sequence is a conjunction of these
- Use a SAT solver (Z₃) to compute all hands compatible with this formula φ
- Collect statistics on this final state

- Initial formula representing constraints on valuations
- Each announcement is a DNF formula
- Announcement sequence is a conjunction of these
- Use a SAT solver (Z₃) to compute all hands compatible with this formula φ
- Collect statistics on this final state
- E.g. if $\neg K_{pq}(c) \land \varphi$ is unsat, it means that p knows that q has c

- Initial formula representing constraints on valuations
- Each announcement is a DNF formula
- Announcement sequence is a conjunction of these
- Use a SAT solver (Z₃) to compute all hands compatible with this formula φ
- Collect statistics on this final state
- E.g. if $\neg K_{pq}(c) \land \varphi$ is unsat, it means that p knows that q has c
- Use this to search for informative and safe runs

- Initial formula representing constraints on valuations
- Each announcement is a DNF formula
- Announcement sequence is a conjunction of these
- Use a SAT solver (Z₃) to compute all hands compatible with this formula φ
- Collect statistics on this final state
- E.g. if $\neg K_{pq}(c) \land \varphi$ is unsat, it means that p knows that q has c
- Use this to search for informative and safe runs
- Coming up with a protocol harder problem

Questions?

Abdullah, Madhavan, Suresh

Thank you!