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The (Synthesis) Problem

▶ Synthesize a function that meets a given specifications.

▶ Example - Synthesize f such that:

▶ f (x1, x2) ≥ x1 ∧
▶ f (x1, x2) ≥ x2 ∧
▶ f (x1, x2) ≈ x1 ∨ f (x1, x2) ≈ x2

▶ Applicable in synthesis of functional programs, program sketching, synthesis of
reactive systems, etc.



If P is a formula that encodes the specification,

P[f, x1, x2] = f (x1, x2) ≥ x1 ∧ f (x1, x2) ≥ x2 ∧
(f (x1, x2) ≈ x1 ∨ f (x1, x2) ≈ x2)

then we must have

∀x1x2. P[f, x1, x2]

And the question that we are asking is

∃f. ∀x1x2. P[f, x1, x2]



▶ Or, more generally,

∃f.︸ ︷︷ ︸
Exists a function s.t.

∀x1, x2, ...xn.P(f, x1, x2, ...xn)︸ ︷︷ ︸
for all x̄, P(f,x̄) is true

▶ An SMT solver may treat f as an uninterpreted function, but the real challenge
here is the universal quantification over x̄.

▶ The solver must construct (a finite representation of) an interpretation for f which
is true for all x̄ .



▶ In contrast, there are effective techniques to show unsatisfiability of universally
quantified formulas.

▶ SMT solvers use instantiation-based methods - generate ground instances until a
refutation is found.

▶ Can we transform our problem into one of checking unsatisfiability?

If satisfiability (F) ⇒ validity (F),

(F is sat) ⇔ (¬F is not valid) ⇔ (¬F is unsatisfiable)



Restriction

1. Satisfiability ⇒ Validity
▶ In other words, we will only consider theories that are satisfaction complete wrt the

formulas we are interested in.
▶ Most theories used in SMT (e.g. various theories of integers, reals, strings, algebraic

datatypes, bit-vectors, etc.) are satisfaction complete wrt the class of closed
first-order formulas.



∃f . ∀x̄ . P(f, x̄) sat
↓ negate

¬ ∃f . ∀x̄ . P(f, x̄) unsat
↓ push ¬

∀f . ∃x̄ . ¬ P(f, x̄) unsat

▶ Another challenge: Negation introduces second-order universal quantification
(over function f).

▶ What if we restrict ourselves to the class of synthesis problems ∃f . ∀x̄ . P[f, x̄] ,
where every occurrence of f in P is of the form f(x̄).

▶ In that case, we can transform the synthesis problem to: ∀x̄ . ∃y . Q[x̄, y].



Restrictions
1. Satisfiability ⇒ Validity

▶ In other words, we will only consider theories that are satisfaction complete wrt the
formulas we are interested in

▶ Most theories used in SMT (e.g. various theories of integers, reals, strings, algebraic
datatypes, bit-vectors, etc.) are satisfaction complete wrt the class of closed
first-order formulas.

2. P consists of single-invocation properties

f (x1, x2) ≥ x1 ∧ f (x1, x2) ≥ x2 ∧ (f (x1, x2) ≈ x1 ∨ f (x1, x2) ≈ x2)

c(x1, x2) ≈ c(x2, x1)



Recall

Synthesis conjecture:

∃f. ∀x1...xn. P[f, x1, ..., xn]

▶ avoid second-order quantification, and

▶ solve an unsatisfiability (universal quantification) problem instead of a satisfiability
one.



So far..

∃f . ∀x̄ . P(f, x̄) sat
↓(single-invocation property)

∀x̄ . ∃g . P(g, x̄) sat
↓(satisfaction-complete theory)

∀x̄ . ∃g . P(g, x̄) valid
↓(negate)

¬∀x̄ . ∃g . P(g, x̄) unsat
↓(push ¬)

∃x̄ . ∀g . ¬P(g, x̄) unsat



Our first example

∃f. ∀x1x2.(f (x1, x2) ≥ x1 ∧ f (x1, x2) ≥ x2 ∧ (f (x1, x2) ≈ x1 ∨ f (x1, x2) ≈ x2)) sat

↓(single-invocation property)

∀x1x2. ∃g. (g ≥ x1 ∧ g ≥ x2 ∧(g ≈ x1 ∨ g ≈ x2)) sat

↓negate (satisfaction-complete theory)

∃x1x2. ∀g. (g < x1 ∨ g < x2 ∨(g ̸≈ x1 ∧ g ̸≈ x2)) unsat

↓Skolemize, for fresh a, b

∀g. (g < a ∨ g < b ∨(g ̸≈ a ∧ g ̸≈ b)) unsat



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 

Ground 

solver 

Quantifiers 

Module 



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 

Quantifiers 

Module 
Ground 

solver 

instances 

a/g, b/g 

(a<a  a<b (a≠a  a≠b)) 
(b<a  b<b (b≠a  b≠b)) 



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 

Quantifiers 

Module 
Ground 

solver 

a<b  
b<a  simplify 



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 

Quantifiers 

Module 

unsat 

Ground 

solver 

a<b  
b<a  

 g.(g<a  g<b (g≠a  g≠b)) is unsatisfable, 

        implies original synthesis conjecture has a solution  



How do we get solutions? 

g.P(g,k) 

Quantifiers 

Module 
Ground 

solver 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k) 

instances 

negate, translate to FO 

unsat 

P(t1,k),…,P(tn,k)|= false 



How do we get solutions? 

g.P(g,k) 

Quantifiers 

Module 
Ground 

solver 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k) 

instances 

negate, translate to FO 

unsat 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx.  ite( P(t1,k), t1, 

 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

           tn)…)[x/k] 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 
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Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 

If P holds for t1, return t1 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 

If P holds for t2, return t2 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 

If P holds for tn-1, return tn-1 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 

Why does P(tn,k) hold? 



Solution for Max Example 

f.xy.(f(x,y)≥x  f(x,y)≥y (f(x,y)=x  f(x,y)=y)) 

|= false 

Claim the following is a solution for f:          

 lxy. ite( a≥a  a≥b (a=a  a=b), a,              

        b)…)[x/a][y/b] 

Given 

Found 
(a≥a  a≥b (a=a  a=b)), 

(b≥a  b≥b (b=a  b=b)) 



Solution for Max Example 

f.xy.(f(x,y)≥x  f(x,y)≥y (f(x,y)=x  f(x,y)=y)) 

|= false 

Claim the following is a solution for f:          

 lxy. ite( x≥x  x≥y (x=x  x=y), x,              

        y)…) 

Given 

Found 
(a≥a  a≥b (a=a  a=b)), 

(b≥a  b≥b (b=a  b=b)) 



Solution for Max Example 

f.xy.(f(x,y)≥x  f(x,y)≥y (f(x,y)=x  f(x,y)=y)) 

|= false 

Claim the following is a solution for f:          

 lxy. ite( x≥y , x, y ) 

Given 

Found 
(a≥a  a≥b (a=a  a=b)), 

(b≥a  b≥b (b=a  b=b)) 



Lifting the single-invocation property restriction

▶ Can we still refute negated synthesis conjectures?

▶ Yes, under syntactic restrictions.



Example: Syntax-Guided Synthesis

▶ Syntactic restriction for the solution space, expressed by these algebraic datatypes:

S := t1 | t2 | zero | one | plus(S, S) | minus(S, S) | if (C, S, S)
C := leq(S, S) | eq(S, S) | and(C, C) | not(C)

▶ And an interpretation of these datatypes in terms of the original theory.

1. evS×Int×Int→Int : embedding S in Int.

2. evC×Int×Int→Bool : embedding C in Bool.
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The evaluation operators

ev(t1, x, y) ≈ x

ev(zero, x, y) ≈ 0

ev(not(c), x, y) ≈ ¬ev(c, x, y)

ev(and(c1, c2), x, y) ≈ ev(c1, x, y) ∧ ev(c2, x, y)

ev(plus(s1, s2), x, y) ≈ ev(s1, x, y) + ev(s2, x, y)

ev(if (c, s1, s2), x, y) ≈ ite(ev(c, x, y), ev(s1, x, y), ev(s2, x, y))



Another example

P[c, x1, x2] = c(x1, x2) ≈ c(x2, x1)

▶ can be restated as follows, where g is a variable of type S:

Pev[g, x1, x2] = ev(g, x1, x2) ≈ ev(g, x2, x1)

▶ Now, instead of finding a witness for ∃c. ∀x1x2.P[c, x1, x2] we will determine the
unsatisfiability of ∃x1x2. ∀g.¬Pev[g, x1, x2].



Positive Example : P[c, x1, x2] = c(x1, x2) ≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ≈ ev(g, x2, x1)

Model Added Formula

[g → t1] ev(t1, a1, b1) ̸≈ ev(t1, b1, a1)

[a1 → 1, b1 → 0] G ⇒ ev(g, 1, 0) ≈ ev(g, 0, 1)

[g → zero] ev(zero, a2, b2) ̸≈ ev(zero, b2, a2)

none

Solution: c(x1, x2) = 0
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The procedure has following properties:

▶ Solution Soundness: Every term that it returns can be mapped to a solution of
the original synthesis conjecture ∃f .∀x̄. P[f, x̄].

▶ Refutation Soundness: If it does not find a solution (up to a given length), the
original conjecture has no solution under the syntactic restrictions up to that
length.

▶ Solution Completeness: If the original synthesis conjecture has a solution under
these restrictions, the procedure will find one.



To conclude

▶ Refutation based approach for syntax-guided synthesis.

▶ Implemented in CVC4; winner in General and LIA tracks at SyGuS-Comp 2014.

▶ Single-invocation - appears to be restrictive but not quite so in practice; 176
benchmarks out of 243 at SyGuS-Comp 2014 were single-invocation.



Thank you.

Questions?


