
Counterexample-Guided Quantifier Instantiation
for Synthesis in SMT

Andrew Reynolds, Morgan Deters, Viktor Kuncak,
Cesare Tinelli, and Clark Barrett

Kumar Madhukar

TCS Research, Pune

Formal Methods Update Meet, IIT Mandi, 17-18 July, 2017

Outline

▶ The Problem

▶ Restrictions

▶ Solutions

The (Synthesis) Problem

▶ Synthesize a function that meets a given specifications.

▶ Example - Synthesize f such that:

▶ f (x1, x2) ≥ x1 ∧
▶ f (x1, x2) ≥ x2 ∧
▶ f (x1, x2) ≈ x1 ∨ f (x1, x2) ≈ x2

▶ Applicable in synthesis of functional programs, program sketching, synthesis of
reactive systems, etc.

If P is a formula that encodes the specification,

P[f, x1, x2] = f (x1, x2) ≥ x1 ∧ f (x1, x2) ≥ x2 ∧
(f (x1, x2) ≈ x1 ∨ f (x1, x2) ≈ x2)

then we must have

∀x1x2. P[f, x1, x2]

And the question that we are asking is

∃f. ∀x1x2. P[f, x1, x2]

▶ Or, more generally,

∃f.︸ ︷︷ ︸
Exists a function s.t.

∀x1, x2, ...xn.P(f, x1, x2, ...xn)︸ ︷︷ ︸
for all x̄, P(f,x̄) is true

▶ An SMT solver may treat f as an uninterpreted function, but the real challenge
here is the universal quantification over x̄.

▶ The solver must construct (a finite representation of) an interpretation for f which
is true for all x̄ .

▶ In contrast, there are effective techniques to show unsatisfiability of universally
quantified formulas.

▶ SMT solvers use instantiation-based methods - generate ground instances until a
refutation is found.

▶ Can we transform our problem into one of checking unsatisfiability?

If satisfiability (F) ⇒ validity (F),

(F is sat) ⇔ (¬F is not valid) ⇔ (¬F is unsatisfiable)

Restriction

1. Satisfiability ⇒ Validity
▶ In other words, we will only consider theories that are satisfaction complete wrt the

formulas we are interested in.
▶ Most theories used in SMT (e.g. various theories of integers, reals, strings, algebraic

datatypes, bit-vectors, etc.) are satisfaction complete wrt the class of closed
first-order formulas.

∃f . ∀x̄ . P(f, x̄) sat
↓ negate

¬ ∃f . ∀x̄ . P(f, x̄) unsat
↓ push ¬

∀f . ∃x̄ . ¬ P(f, x̄) unsat

▶ Another challenge: Negation introduces second-order universal quantification
(over function f).

▶ What if we restrict ourselves to the class of synthesis problems ∃f . ∀x̄ . P[f, x̄] ,
where every occurrence of f in P is of the form f(x̄).

▶ In that case, we can transform the synthesis problem to: ∀x̄ . ∃y . Q[x̄, y].

Restrictions
1. Satisfiability ⇒ Validity

▶ In other words, we will only consider theories that are satisfaction complete wrt the
formulas we are interested in

▶ Most theories used in SMT (e.g. various theories of integers, reals, strings, algebraic
datatypes, bit-vectors, etc.) are satisfaction complete wrt the class of closed
first-order formulas.

2. P consists of single-invocation properties

f (x1, x2) ≥ x1 ∧ f (x1, x2) ≥ x2 ∧ (f (x1, x2) ≈ x1 ∨ f (x1, x2) ≈ x2)

c(x1, x2) ≈ c(x2, x1)

Recall

Synthesis conjecture:

∃f. ∀x1...xn. P[f, x1, ..., xn]

▶ avoid second-order quantification, and

▶ solve an unsatisfiability (universal quantification) problem instead of a satisfiability
one.

So far..

∃f . ∀x̄ . P(f, x̄) sat
↓(single-invocation property)

∀x̄ . ∃g . P(g, x̄) sat
↓(satisfaction-complete theory)

∀x̄ . ∃g . P(g, x̄) valid
↓(negate)

¬∀x̄ . ∃g . P(g, x̄) unsat
↓(push ¬)

∃x̄ . ∀g . ¬P(g, x̄) unsat

Our first example

∃f. ∀x1x2.(f (x1, x2) ≥ x1 ∧ f (x1, x2) ≥ x2 ∧ (f (x1, x2) ≈ x1 ∨ f (x1, x2) ≈ x2)) sat

↓(single-invocation property)

∀x1x2. ∃g. (g ≥ x1 ∧ g ≥ x2 ∧(g ≈ x1 ∨ g ≈ x2)) sat

↓negate (satisfaction-complete theory)

∃x1x2. ∀g. (g < x1 ∨ g < x2 ∨(g ̸≈ x1 ∧ g ̸≈ x2)) unsat

↓Skolemize, for fresh a, b

∀g. (g < a ∨ g < b ∨(g ̸≈ a ∧ g ̸≈ b)) unsat

Solving Max Example

g.(g<a g<b (g≠a g≠b))

Ground

solver

Quantifiers

Module

Solving Max Example

g.(g<a g<b (g≠a g≠b))

Quantifiers

Module
Ground

solver

instances

a/g, b/g

(a<a a<b (a≠a a≠b))
(b<a b<b (b≠a b≠b))

Solving Max Example

g.(g<a g<b (g≠a g≠b))

Quantifiers

Module
Ground

solver

a<b
b<a simplify

Solving Max Example

g.(g<a g<b (g≠a g≠b))

Quantifiers

Module

unsat

Ground

solver

a<b
b<a

 g.(g<a g<b (g≠a g≠b)) is unsatisfable,

 implies original synthesis conjecture has a solution

How do we get solutions?

g.P(g,k)

Quantifiers

Module
Ground

solver

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)

instances

negate, translate to FO

unsat

P(t1,k),…,P(tn,k)|= false

How do we get solutions?

g.P(g,k)

Quantifiers

Module
Ground

solver

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)

instances

negate, translate to FO

unsat

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,

 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

If P holds for t1, return t1

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

If P holds for t2, return t2

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

If P holds for tn-1, return tn-1

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

Why does P(tn,k) hold?

Solution for Max Example

f.xy.(f(x,y)≥x f(x,y)≥y (f(x,y)=x f(x,y)=y))

|= false

Claim the following is a solution for f:

 lxy. ite(a≥a a≥b (a=a a=b), a,

 b)…)[x/a][y/b]

Given

Found
(a≥a a≥b (a=a a=b)),

(b≥a b≥b (b=a b=b))

Solution for Max Example

f.xy.(f(x,y)≥x f(x,y)≥y (f(x,y)=x f(x,y)=y))

|= false

Claim the following is a solution for f:

 lxy. ite(x≥x x≥y (x=x x=y), x,

 y)…)

Given

Found
(a≥a a≥b (a=a a=b)),

(b≥a b≥b (b=a b=b))

Solution for Max Example

f.xy.(f(x,y)≥x f(x,y)≥y (f(x,y)=x f(x,y)=y))

|= false

Claim the following is a solution for f:

 lxy. ite(x≥y , x, y)

Given

Found
(a≥a a≥b (a=a a=b)),

(b≥a b≥b (b=a b=b))

Lifting the single-invocation property restriction

▶ Can we still refute negated synthesis conjectures?

▶ Yes, under syntactic restrictions.

Example: Syntax-Guided Synthesis

▶ Syntactic restriction for the solution space, expressed by these algebraic datatypes:

S := t1 | t2 | zero | one | plus(S, S) | minus(S, S) | if (C, S, S)
C := leq(S, S) | eq(S, S) | and(C, C) | not(C)

▶ And an interpretation of these datatypes in terms of the original theory.

1. evS×Int×Int→Int : embedding S in Int.

2. evC×Int×Int→Bool : embedding C in Bool.

Example: Syntax-Guided Synthesis

▶ Syntactic restriction for the solution space, expressed by these algebraic datatypes:

S := t1 | t2 | zero | one | plus(S, S) | minus(S, S) | if (C, S, S)
C := leq(S, S) | eq(S, S) | and(C, C) | not(C)

▶ And an interpretation of these datatypes in terms of the original theory.

1. evS×Int×Int→Int : embedding S in Int.

2. evC×Int×Int→Bool : embedding C in Bool.

The evaluation operators

ev(t1, x, y) ≈ x

ev(zero, x, y) ≈ 0

ev(not(c), x, y) ≈ ¬ev(c, x, y)

ev(and(c1, c2), x, y) ≈ ev(c1, x, y) ∧ ev(c2, x, y)

ev(plus(s1, s2), x, y) ≈ ev(s1, x, y) + ev(s2, x, y)

ev(if (c, s1, s2), x, y) ≈ ite(ev(c, x, y), ev(s1, x, y), ev(s2, x, y))

Another example

P[c, x1, x2] = c(x1, x2) ≈ c(x2, x1)

▶ can be restated as follows, where g is a variable of type S:

Pev[g, x1, x2] = ev(g, x1, x2) ≈ ev(g, x2, x1)

▶ Now, instead of finding a witness for ∃c. ∀x1x2.P[c, x1, x2] we will determine the
unsatisfiability of ∃x1x2. ∀g.¬Pev[g, x1, x2].

Positive Example : P[c, x1, x2] = c(x1, x2) ≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ≈ ev(g, x2, x1)

Model Added Formula

[g → t1] ev(t1, a1, b1) ̸≈ ev(t1, b1, a1)

[a1 → 1, b1 → 0] G ⇒ ev(g, 1, 0) ≈ ev(g, 0, 1)

[g → zero] ev(zero, a2, b2) ̸≈ ev(zero, b2, a2)

none

Solution: c(x1, x2) = 0

Positive Example : P[c, x1, x2] = c(x1, x2) ≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ̸≈ ev(t1, b1, a1)

[a1 → 1, b1 → 0] G ⇒ ev(g, 1, 0) ≈ ev(g, 0, 1)

[g → zero] ev(zero, a2, b2) ̸≈ ev(zero, b2, a2)

none

Solution: c(x1, x2) = 0

Positive Example : P[c, x1, x2] = c(x1, x2) ≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ̸≈ ev(t1, b1, a1)

[a1 → 1, b1 → 0] G ⇒ ev(g, 1, 0) ≈ ev(g, 0, 1)

[g → zero] ev(zero, a2, b2) ̸≈ ev(zero, b2, a2)

none

Solution: c(x1, x2) = 0

Positive Example : P[c, x1, x2] = c(x1, x2) ≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ̸≈ ev(t1, b1, a1)

[a1 → 1, b1 → 0] G ⇒ ev(g, 1, 0) ≈ ev(g, 0, 1)

[g → zero] ev(zero, a2, b2) ̸≈ ev(zero, b2, a2)

none

Solution: c(x1, x2) = 0

Positive Example : P[c, x1, x2] = c(x1, x2) ≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ̸≈ ev(t1, b1, a1)

[a1 → 1, b1 → 0] G ⇒ ev(g, 1, 0) ≈ ev(g, 0, 1)

[g → zero] ev(zero, a2, b2) ̸≈ ev(zero, b2, a2)

none

Solution: c(x1, x2) = 0

Positive Example : P[c, x1, x2] = c(x1, x2) ≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ̸≈ ev(t1, b1, a1)

[a1 → 1, b1 → 0] G ⇒ ev(g, 1, 0) ≈ ev(g, 0, 1)

[g → zero] ev(zero, a2, b2) ̸≈ ev(zero, b2, a2)

none

Solution: c(x1, x2) = 0

Negative Example: P[c, x1, x2] = c(x1, x2) ̸≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ̸≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ≈ ev(t1, b1, a1)

[a1 → 0, b1 → 0] G ⇒ ev(g, 0, 0) ̸≈ ev(g, 0, 0)

none

No Solution

Negative Example: P[c, x1, x2] = c(x1, x2) ̸≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ̸≈ ev(g, x2, x1)

Model Added Formula

[g → t1] ev(t1, a1, b1) ≈ ev(t1, b1, a1)

[a1 → 0, b1 → 0] G ⇒ ev(g, 0, 0) ̸≈ ev(g, 0, 0)

none

No Solution

Negative Example: P[c, x1, x2] = c(x1, x2) ̸≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ̸≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ≈ ev(t1, b1, a1)

[a1 → 0, b1 → 0] G ⇒ ev(g, 0, 0) ̸≈ ev(g, 0, 0)

none

No Solution

Negative Example: P[c, x1, x2] = c(x1, x2) ̸≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ̸≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ≈ ev(t1, b1, a1)

[a1 → 0, b1 → 0] G ⇒ ev(g, 0, 0) ̸≈ ev(g, 0, 0)

none

No Solution

Negative Example: P[c, x1, x2] = c(x1, x2) ̸≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ̸≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ≈ ev(t1, b1, a1)

[a1 → 0, b1 → 0] G ⇒ ev(g, 0, 0) ̸≈ ev(g, 0, 0)

none

No Solution

Negative Example: P[c, x1, x2] = c(x1, x2) ̸≈ c(x2, x1)

Pev[g, x1, x2] = ev(g, x1, x2) ̸≈ ev(g, x2, x1)

Model Added Formula
[g → t1] ev(t1, a1, b1) ≈ ev(t1, b1, a1)

[a1 → 0, b1 → 0] G ⇒ ev(g, 0, 0) ̸≈ ev(g, 0, 0)

none

No Solution

The procedure has following properties:

▶ Solution Soundness: Every term that it returns can be mapped to a solution of
the original synthesis conjecture ∃f .∀x̄. P[f, x̄].

▶ Refutation Soundness: If it does not find a solution (up to a given length), the
original conjecture has no solution under the syntactic restrictions up to that
length.

▶ Solution Completeness: If the original synthesis conjecture has a solution under
these restrictions, the procedure will find one.

To conclude

▶ Refutation based approach for syntax-guided synthesis.

▶ Implemented in CVC4; winner in General and LIA tracks at SyGuS-Comp 2014.

▶ Single-invocation - appears to be restrictive but not quite so in practice; 176
benchmarks out of 243 at SyGuS-Comp 2014 were single-invocation.

Thank you.

Questions?

