Distributed Games

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Formal Methods Update 2017
[T Mandi, 17 July 2017

http://www.cmi.ac.in/~madhavan

Church’s Problem

Transform input bitstream into output bitstream

output input

"B =11010. .. a = 01101...

Input-output relationship is specified

Synthesize a transducer that meets the specification

5(t) should be generated immediately after o(t)v
o In general, 3(t) could depend on a(0)a(1) - a(t)

o Output 1 iff number of 0’s in input so far is even

An Example

@ Behaviour is specified in, say, MSO
o Vta(t)=1= f5(t)=1
o —It.A(t) = B(t+1) =0
o Ft.a(t)=0=Ft.4(t)=0
@ A 2-state strategy
e On input 1, produce 1
e On input 0, invert the last output

The result

Biichi-Landweber Theorem (1969)

Any MSO specification can be implemented as a finite-state
transducer.

From synthesis to games

@ Church’s Problem: Synthesis or Realizability

o Alternatively, view as a 2-player game
o Player A generates o(t)
o Player B generates [3(t)
o Player B wins if («(0)a(1)---.3(0)3(1)---) meets the

specification

o Constructing a winning strategy for B solves the synthesis
problem

Games on graphs

@ Move a token around the graph
@ Square nodes belong to A, circles to B

@ Player who owns the node makes the next move

Winning conditions

/

@ Reach node 3

e A wins unless game starts in node 3

o Divert the token from 2 to 5 and from 6 to 4
e Visit {2, 7} infinitely often

e From 1, B alternately moves to 2 and 7

From synthesis to games

Biichi-Landweber Theorem (1969)

Any MSO specification can be implemented as a finite-state
transducer.

@ Can transform MSO specifications into automata

@ Synthesis problem becomes a graph game on the underlying
automaton

@ Finite-state strategy for graph games solves the synthesis
problem

@ Alternative proof of Biichi-Landweber Theorem

From realizability to controllability

@ Synthesis or realizability asks to construct an automaton that
implements a specfication

o Controllability asks to restrict the behaviour of a given
automaton

@ Closed system — automaton in which all transitions can be
chosen by the system

@ Open system — some transitions are decided by the
environment, uncontrollable

Controlling Discrete Event Systems

Ramadge and Wonham, 1989

Partition actions 2 as controllable > . and uncontrollable >,

@ Given transition system generates a prefix closed language L

Want to constrain the behaviour within K C L

If wae L and a € >, supervisor can disable a

o If wa € L and o € X, supervisor cannot disable

For regular specifications, can synthesize a finite-state
supervisor

The distributed setting

Pnueli and Rosner (1989)

Generalize to multiple interconnected processes

Distributed inputs, outputs and intermediate shared variables

Again, address realizability and controllability

Distributed architecture

Inputs x;, outputs y;, shared communication variables ,

Underlying graph is acyclic

@ Each process P has input and output variables /n(P) and
out(P)
@ P implements a local strategy to compute out(FP) at t from

in(P) at 0,1,..., t

Distributed synthesis

e Given a specification over inputs and outputs (X, V)
implement it over a compatible architecture (distributed
implementability)

e Trivial solution uses a single process

e Given a specification (X,) and an architecture A, find an
implementation over A (distributed realizability)

Distributed realizability

Pnueli-Rosner (1989)
Distributed realizability is undecidable.

@ Disconnected architecture

@ Components simulate the %o 1

tape of a Turing machine
@ Global specification o °
combining both inputs and
outputs can be realized iff - 5

the given Turing machine
halts

Distributed realizability

@ The single node architecture is decidable (Biichi-Landweber)

@ The only decidable architectures are pipelines . ..

o In the undecidability proof, %o “

the specification links
{x0.y0} and {x1.y1} though
there is no communication

@ “Local” specifications? Yo n

Controllability with local specifications

o Madhusudan and Thiagarajan, 2001

@ Specification for each process in terms of its inputs and
outputs

@ Study controllability rather than realizability

@ Slight generalization of decidable architectures to “clean”

pipelines
E xl i xz
v v
o\ -)
—_— |

Distributed alphabets

Actions >~ = {a, b, ...}

Processes P = {p.q,...}
@ Each action 2 has a set of readers, R(a), and a set of writers,
W(a)

e W(a) C R(a)

o R(a) N W(b) =0 iff R(b)N W(a) =0

An a-transition reads states of processes in R(a) and updates
states of processes in \V/(a)

Special case is usual distributed alphabet —
loc(a) = R(a) = W(a) for each a

Controllability

Partition > as controllable > . and uncontrollable %,

Each action a has an underlying transition relation A,

@ For an action a € ¥, agents can choose a transition from A,

For an action b € >, environment can choose any transition
from A

Winning condition

o In terms of global states observed across all subtraces

Control problem

o Come up with a strategy to guide controllable transitions to
achieve the winning condition

Local strategies

@ A strategy decides the next action based on the past history
@ What history should be observable?

@ The Pnueli-Rosner undecidability result shows that access to
global information is unreasonable

@ How does one define local information?

Distribution and independence

@ Two actions are independent if they cannot influence each
other

o If R(a) overlaps with W(b), occurrence of b can change
options for a

@ Define a and b to be independent if R(a) is disjoint from
W(b)

@ The constraint R(a) N W(b) =0 iff R(b)n W(a)=10
ensures that this is a symmetric relation

@ Independence relation /| C > x >¥— symmetric, irreflexive

@ Dependence relation, complement, (> x ¥) \ /— symmetric,
reflexive

Mazurkiewicz Traces

@ Independence imposes a labelled partial order structure on
runs

@ Mazurkiewicz trace

D o] p
i a a
q g g
: r r
ro
E b
| 8
8

Strictly local history

@ A process can see the actions in which it took part

p i f P P)

a a a

@ Does not account for information communicated through
synchronizations

Causal history

@ A process can see the actions which it has heard about
o Directly, it is part of W/(a)

e Indirectly, it has information through partners of other actions

p — p — p

qii q \%—7/ q
T

Causal memory strategies

@ Control strategy has access to causal history
@ Which games are decidable using such strategies?

@ Can these strategies be implementing as finite-state?

e Remember only a bounded amount of the causal past

Characterizing architectures

o Consider the dependency graph (%, D)
e Vertices are actions
o Edges are dependence relation
@ Structure of dependency graph is a way to measure the
complexity of the distributed architecture
@ Look at special cases

o Series-parallel — dependency graph built by a sequence of
sequential and parallel composition operations

o Trees

What is known

o Series-parallel graphs [Gastin, Lerman and Zeitoun, 2004]
o Causal memory strategy implies a bounded memory strategy
o Existence of causal memory strategy is decidable

@ Tree architectures [Genest, Gimbert, Muscholl, Walukiewicz,
2012]

What is not known

@ Is the existence of causal memory strategies decidable for all
architectures?

