Distributed Games

Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Formal Methods Update 2017 IIT Mandi, 17 July 2017

Church's Problem

• Transform input bitstream into output bitstream

- Input-output relationship is specified
- Synthesize a transducer that meets the specification
- $\beta(t)$ should be generated immediately after $\alpha(t)v$
 - In general, $\beta(t)$ could depend on $\alpha(0)\alpha(1)\cdots\alpha(t)$
 - Output 1 iff number of 0's in input so far is even

An Example

• Behaviour is specified in, say, MSO

- $\forall t.\alpha(t) = 1 \Rightarrow \beta(t) = 1$
- $\neg \exists t.\beta(t) = \beta(t+1) = 0$
- $\exists^{\omega}t.\alpha(t) = 0 \Rightarrow \exists^{\omega}t.\beta(t) = 0$
- A 2-state strategy
 - On input 1, produce 1
 - On input 0, invert the last output

The result

Büchi-Landweber Theorem (1969)

Any MSO specification can be implemented as a finite-state transducer.

From synthesis to games

- Church's Problem: Synthesis or Realizability
- Alternatively, view as a 2-player game
 - Player A generates $\alpha(t)$
 - Player *B* generates $\beta(t)$
 - Player B wins if (α(0)α(1)····, β(0)β(1)····) meets the specification
- Constructing a winning strategy for *B* solves the synthesis problem

Games on graphs

- Move a token around the graph
- Square nodes belong to A, circles to B
- Player who owns the node makes the next move

Winning conditions

- Reach node 3
 - A wins unless game starts in node 3
 - Divert the token from 2 to 5 and from 6 to 4
- Visit {2,7} infinitely often
 - From 1, B alternately moves to 2 and 7

From synthesis to games

Büchi-Landweber Theorem (1969)

Any MSO specification can be implemented as a finite-state transducer.

- Can transform MSO specifications into automata
- Synthesis problem becomes a graph game on the underlying automaton
- Finite-state strategy for graph games solves the synthesis problem
- Alternative proof of Büchi-Landweber Theorem

From realizability to controllability

- Synthesis or realizability asks to construct an automaton that implements a specification
- Controllability asks to restrict the behaviour of a given automaton
- Closed system automaton in which all transitions can be chosen by the system
- Open system some transitions are decided by the environment, uncontrollable

Controlling Discrete Event Systems

- Ramadge and Wonham, 1989
- Partition actions Σ as controllable Σ_c and uncontrollable Σ_u
- Given transition system generates a prefix closed language L
- Want to constrain the behaviour within $K \subseteq L$
- If $wa \in L$ and $a \in \Sigma_c$, supervisor can disable a
- If $w\alpha \in L$ and $\alpha \in \Sigma_u$, supervisor cannot disable α
- For regular specifications, can synthesize a finite-state supervisor

The distributed setting

- Pnueli and Rosner (1989)
- Generalize to multiple interconnected processes
- Distributed inputs, outputs and intermediate shared variables
- Again, address realizability and controllability

Distributed architecture

- Inputs x_i , outputs y_i , shared communication variables t_k
- Underlying graph is acyclic
- Each process P has input and output variables in(P) and out(P)
- P implements a local strategy to compute out(P) at t from in(P) at 0, 1, ..., t

Distributed synthesis

- Given a specification over inputs and outputs φ(x̄, ȳ) implement it over a compatible architecture (distributed implementability)
 - Trivial solution uses a single process
- Given a specification $\varphi(\bar{x}, \bar{y})$ and an architecture \mathcal{A} , find an implementation over \mathcal{A} (distributed realizability)

Distributed realizability

Pnueli-Rosner (1989)

Distributed realizability is undecidable.

- Disconnected architecture
- Components simulate the tape of a Turing machine
- Global specification combining both inputs and outputs can be realized iff the given Turing machine halts

Distributed realizability

- The single node architecture is decidable (Büchi-Landweber)
- The only decidable architectures are pipelines

- In the undecidability proof, the specification links {x₀, y₀} and {x₁, y₁} though there is no communication
- "Local" specifications?

Controllability with local specifications

- Madhusudan and Thiagarajan, 2001
- Specification for each process in terms of its inputs and outputs
- Study controllability rather than realizability
- Slight generalization of decidable architectures to "clean" pipelines

Distributed alphabets

- Actions **Σ** = {*a*, *b*, . . . }
- Processes $\mathcal{P} = \{p, q, \ldots\}$
- Each action a has a set of readers, R(a), and a set of writers, W(a)
 - $W(a) \subseteq R(a)$
 - $R(a) \cap W(b) = \emptyset$ iff $R(b) \cap W(a) = \emptyset$
- An a-transition reads states of processes in R(a) and updates states of processes in W(a)
- Special case is usual distributed alphabet loc(a) = R(a) = W(a) for each a

Controllability

- Partition Σ as controllable Σ_c and uncontrollable Σ_u
- Each action a has an underlying transition relation Δ_a
- For an action $a \in \Sigma_c$, agents can choose a transition from Δ_a
- For an action $b \in \Sigma_u$, environment can choose any transition from Δ_b
- Winning condition
 - In terms of global states observed across all subtraces
- Control problem
 - Come up with a strategy to guide controllable transitions to achieve the winning condition

Local strategies

- A strategy decides the next action based on the past history
- What history should be observable?
- The Pnueli-Rosner undecidability result shows that access to global information is unreasonable
- How does one define local information?

Distribution and independence

- Two actions are independent if they cannot influence each other
- If R(a) overlaps with W(b), occurrence of b can change options for a
- Define a and b to be independent if R(a) is disjoint from W(b)
- The constraint R(a) ∩ W(b) = Ø iff R(b) ∩ W(a) = Ø ensures that this is a symmetric relation
- Independence relation $I \subset \Sigma \times \Sigma$ symmetric, irreflexive
- Dependence relation, complement, $(\Sigma \times \Sigma) \setminus {\it I}$ symmetric, reflexive

Mazurkiewicz Traces

- Independence imposes a labelled partial order structure on runs
- Mazurkiewicz trace

Strictly local history

• A process can see the actions in which it took part

 Does not account for information communicated through synchronizations

Causal history

- A process can see the actions which it has heard about
 - Directly, it is part of W(a)
 - Indirectly, it has information through partners of other actions

Causal memory strategies

- Control strategy has access to causal history
- Which games are decidable using such strategies?
- Can these strategies be implementing as finite-state?
 - Remember only a bounded amount of the causal past

Characterizing architectures

- Consider the dependency graph (Σ, D)
 - Vertices are actions
 - Edges are dependence relation
- Structure of dependency graph is a way to measure the complexity of the distributed architecture
- Look at special cases
 - Series-parallel dependency graph built by a sequence of sequential and parallel composition operations
 - Trees

What is known

- Series-parallel graphs [Gastin, Lerman and Zeitoun, 2004]
 - Causal memory strategy implies a bounded memory strategy
 - Existence of causal memory strategy is decidable
- Tree architectures [Genest, Gimbert, Muscholl, Walukiewicz, 2012]

What is not known

• Is the existence of causal memory strategies decidable for all architectures?