
Distributed Games

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Formal Methods Update 2017
IIT Mandi, 17 July 2017

http://www.cmi.ac.in/~madhavan


Church’s Problem

Transform input bitstream into output bitstream

Input-output relationship is specified

Synthesize a transducer that meets the specification

β(t) should be generated immediately after α(t)v

In general, β(t) could depend on α(0)α(1) · · ·α(t)

Output 1 iff number of 0’s in input so far is even



An Example

Behaviour is specified in, say, MSO

∀t.α(t) = 1 ⇒ β(t) = 1

¬∃t.β(t) = β(t+1) = 0

∃ωt.α(t) = 0 ⇒ ∃ωt.β(t) = 0

A 2-state strategy

On input 1, produce 1

On input 0, invert the last output



The result

Büchi-Landweber Theorem (1969)

Any MSO specification can be implemented as a finite-state
transducer.



From synthesis to games

Church’s Problem: Synthesis or Realizability

Alternatively, view as a 2-player game

Player A generates α(t)

Player B generates β(t)

Player B wins if (α(0)α(1) · · · , β(0)β(1) · · · ) meets the
specification

Constructing a winning strategy for B solves the synthesis
problem



Games on graphs

Move a token around the graph

Square nodes belong to A, circles to B

Player who owns the node makes the next move



Winning conditions

Reach node 3

A wins unless game starts in node 3

Divert the token from 2 to 5 and from 6 to 4

Visit {2, 7} infinitely often

From 1, B alternately moves to 2 and 7



From synthesis to games

Büchi-Landweber Theorem (1969)

Any MSO specification can be implemented as a finite-state
transducer.

Can transform MSO specifications into automata

Synthesis problem becomes a graph game on the underlying
automaton

Finite-state strategy for graph games solves the synthesis
problem

Alternative proof of Büchi-Landweber Theorem



From realizability to controllability

Synthesis or realizability asks to construct an automaton that
implements a specfication

Controllability asks to restrict the behaviour of a given
automaton

Closed system — automaton in which all transitions can be
chosen by the system

Open system — some transitions are decided by the
environment, uncontrollable



Controlling Discrete Event Systems

Ramadge and Wonham, 1989

Partition actions Σ as controllable Σc and uncontrollable Σu

Given transition system generates a prefix closed language L

Want to constrain the behaviour within K ⊆ L

If wa ∈ L and a ∈ Σc , supervisor can disable a

If wα ∈ L and α ∈ Σu, supervisor cannot disable α

For regular specifications, can synthesize a finite-state
supervisor



The distributed setting

Pnueli and Rosner (1989)

Generalize to multiple interconnected processes

Distributed inputs, outputs and intermediate shared variables

Again, address realizability and controllability



Distributed architecture

Inputs xi , outputs yj , shared communication variables tk

Underlying graph is acyclic

Each process P has input and output variables in(P) and
out(P)

P implements a local strategy to compute out(P) at t from
in(P) at 0, 1, . . . , t



Distributed synthesis

Given a specification over inputs and outputs ϕ(x̄ , ȳ)
implement it over a compatible architecture (distributed
implementability)

Trivial solution uses a single process

Given a specification ϕ(x̄ , ȳ) and an architecture A, find an
implementation over A (distributed realizability)



Distributed realizability

Pnueli-Rosner (1989)

Distributed realizability is undecidable.

Disconnected architecture

Components simulate the
tape of a Turing machine

Global specification
combining both inputs and
outputs can be realized iff
the given Turing machine
halts



Distributed realizability

The single node architecture is decidable (Büchi-Landweber)

The only decidable architectures are pipelines . . .

In the undecidability proof,
the specification links
{x0, y0} and {x1, y1} though
there is no communication

“Local” specifications?



Controllability with local specifications

Madhusudan and Thiagarajan, 2001

Specification for each process in terms of its inputs and
outputs

Study controllability rather than realizability

Slight generalization of decidable architectures to “clean”
pipelines



Distributed alphabets

Actions Σ = {a, b, . . .}

Processes P = {p, q, . . .}

Each action a has a set of readers, R(a), and a set of writers,
W (a)

W (a) ⊆ R(a)

R(a) ∩W (b) = ∅ iff R(b) ∩W (a) = ∅

An a-transition reads states of processes in R(a) and updates
states of processes in W (a)

Special case is usual distributed alphabet —
loc(a) = R(a) = W (a) for each a



Controllability

Partition Σ as controllable Σc and uncontrollable Σu

Each action a has an underlying transition relation ∆a

For an action a ∈ Σc , agents can choose a transition from ∆a

For an action b ∈ Σu, environment can choose any transition
from ∆b

Winning condition

In terms of global states observed across all subtraces

Control problem

Come up with a strategy to guide controllable transitions to
achieve the winning condition



Local strategies

A strategy decides the next action based on the past history

What history should be observable?

The Pnueli-Rosner undecidability result shows that access to
global information is unreasonable

How does one define local information?



Distribution and independence

Two actions are independent if they cannot influence each
other

If R(a) overlaps with W (b), occurrence of b can change
options for a

Define a and b to be independent if R(a) is disjoint from
W (b)

The constraint R(a) ∩W (b) = ∅ iff R(b) ∩W (a) = ∅
ensures that this is a symmetric relation

Independence relation I ⊂ Σ× Σ— symmetric, irreflexive

Dependence relation, complement, (Σ× Σ) \ I — symmetric,
reflexive



Mazurkiewicz Traces

Independence imposes a labelled partial order structure on
runs

Mazurkiewicz trace



Strictly local history

A process can see the actions in which it took part

Does not account for information communicated through
synchronizations



Causal history

A process can see the actions which it has heard about

Directly, it is part of W (a)

Indirectly, it has information through partners of other actions



Causal memory strategies

Control strategy has access to causal history

Which games are decidable using such strategies?

Can these strategies be implementing as finite-state?

Remember only a bounded amount of the causal past



Characterizing architectures

Consider the dependency graph (Σ,D)

Vertices are actions

Edges are dependence relation

Structure of dependency graph is a way to measure the
complexity of the distributed architecture

Look at special cases

Series-parallel — dependency graph built by a sequence of
sequential and parallel composition operations

Trees



What is known

Series-parallel graphs [Gastin, Lerman and Zeitoun, 2004]

Causal memory strategy implies a bounded memory strategy

Existence of causal memory strategy is decidable

Tree architectures [Genest, Gimbert, Muscholl, Walukiewicz,
2012]



What is not known

Is the existence of causal memory strategies decidable for all
architectures?


