
Between two- and three-variable logic over
word models

Kamal Lodaya
with Andreas Krebs, Paritosh Pandya, Howard Straubing

The Institute of Mathematical Sciences, Chennai

July 2017

First-order and temporal logic

I First-order logic FO is normally interpreted over structures
with domains D

I Linear-time temporal logic is normally interpreted over
linearly ordered structures (D, <)

I Linear temporal logic LTL is normally interpreted over
(ω,<,Suc), called ω-words over A, a finite alphabet
α ::= p ∈ Prop | ¬ α | α ∨ β | Xα | Fα | Yα | Pα |

α U β | α S β

I Think of the letters of the alphabet as interpretations of
atomic propositions (monadic predicates), A is ℘(Prop)

I w , i |= p iff p ∈ w(i)
I w , i |= Xα iff w , i + 1 |= α

I
w , i |= αUβ iff for some k : i ≤ k : w , k |= β and

∀j : i ≤ j < k : w , j |= α

Finite models

I Here we consider FO and LTL (with enhancements)
interpreted over finite models which are initial segments of
ω, that is, ({1, . . . ,n}, <,Suc), called finite words over a
finite alphabet A, or atomic propositions ℘(Prop)

I Sets of finite words are called (formal) languages
I FO sentences and LTL formulae define languages
I Use regular expression notation, for example (ab)∗aa(ab)∗

over the alphabet {a,b} is words with alternating
occurrences of the two letters beginning with a and ending
with b, except for one consecutive occurrence of a’s
somewhere in the middle

I Results extend to ω-words

Quantifier alternation hierarchy
(Brzozowski-Cohen, Thomas)

I An FO sentence is Σr [<]/Πr [<] if it has r alternating blocks
of quantifiers, with first block existential/universal

I ∆r [<] is the class of languages which are definable by
both Σr [<] and Πr [<] sentences (Σr [<] ∩ Πr [<] languages)

I Language A∗aaA∗ in Σ2[<] \ Π2[<], defined by
∃x∃y∀z(x < z < y ⊃

∧
a∈A

¬a(z))

I (ab)∗ in Π2[<] \ Σ2[<]

I (a(ba)∗b(ba)∗)∗ in Π3[<] \ B2[<]

Finite-variable logics

I FOk , FO using at most k variables
I (Kamp) introduced binary modalities such as “until” to

capture FO over linear orders
I By a standard translation reusing the same bound

variables, this means that FO[<] is equivalent to FO3

(Kamp)

Two-variable logic

I (Mortimer, Grädel-Otto-Rosen) showed that FO2 is much
weaker than FO

I (Thérien-Wilke) showed that over words, FO2[<] is below
the second level of the quantifier alternation hierarchy

I FO2[<] is exactly ∆2[<] = Σ2[<] ∩ Π2[<] (Thérien-Wilke)
I With alphabet {0,1}3, let ADD be the language of words

representing vertically three numbers
(m

n
m+n

)
I ADD is not definable in FO2[<]

During and throughout (Pratt, Segerberg)

I During the flight from Delhi to Seoul they serve two snacks:
#snack(del , seoul) = 2

I I slept throughout the flight from Chennai to Delhi:
¬awake(ch,del), or #awake(ch,del) = 0

I Generally speaking, counting propositions upto a threshold
I These operators also appeared in interval temporal logic

and duration calculus (Moszkowski, Zhou-Hoare-Ravn)

Within first-order logic

I Thresholds are easily defined in first-order logic on words:
#snack(del , seoul) = 2 translates to
del < seoul∧
∃x , y : del < x < y < seoul ∧ snack(x) ∧ snack(y)∧
∀z : (del < z < x) ∨ (x < z < y) ∨ (y < z < seoul) ⊃

¬snack(z)

I Oriented: #snack(seoul ,del) = 2 is about the return flight
I So x < y is definable as #A(x , y) ≥ 0 (A is the alphabet)
I Translating out thresholds requires more variables
I Thresholds are not definable in two-variable logic FO2

Counting upto a threshold

I A threshold constraint has the form:
#B(x , y) ∼ c, where B ⊆ A, ∼ a comparison operation and
c ≥ 0

I Its semantics is as follows:
w , i , j |= #B(x , y) ∼ c ⇐⇒ |{z | x < z < y ∧

∨
a∈B

a(z)}| ∼ c

Logics with threshold

I The logic FO[Th] with threshold constraints has the same
expressiveness as FO[<]

I The logic FO2[Th] is the two-variable fragment
I The temporal logic ThTL[F,P] has unary future and past

modalities F#B∼c and P#B∼c

I w , i |= a iff w(i) = a
I w , i |= F#B∼cα iff for some k > i , we have:

w , k |= α and |{j | w(j) ∈ B, i < j < k}| ∼ c

Two-variable logic with between

I The binary between relation a(x , y) is defined as the
threshold constraint #{a}(x , y) > 0
(we usually drop the set brackets)

I w , i , j |= a(x , y) iff for some z, x < z < y and w(z) = a
I The logic FO[Bet] with only between constraints has the

same expressiveness as FO[<]

I The logic FO2[Bet] is the two-variable fragment only using
between constraints

Theorem
FO2[Th] and FO2[Bet] are equally expressive, their sentences
define the same class of languages.

Definability examples

I The successor relation Suc(x , y) is definable as
#A(x , y) = 0

I Hence languages like A∗aaA∗ which are not
FO2[<]-definable can be expressed

I But one can go beyond FO2[<,Suc]:
Stairk = A∗ac∗ac∗ . . . c∗aA∗ with k intermediate
occurrences of a (Etessami-Wilke) can be expressed,
these are at different levels of the until-since hierarchy of
linear temporal logic (Thérien-Wilke)

I Includes B2[<], the second level of the quantifier
alternation hierarchy

Implementing numbers

I An r -bit value b1 · · · br over {0,1}, from LSB b1 to MSB br :
Bit1

0 (x)
def
= ∃y . Suc(x , y) ∧ 0(y)

Bit i+1
0 (x)

def
= ∃y . Suc(x , y) ∧ Bit i

0(y)
(similarly Bit i

1(x))

I A sequence c1c2 . . . ck of r -bit values with separator s:
s · b1

1 · · · b1
r · s · b2

1 · · · b2
r · s · · · s · bk

1 · · · bk
r

I Value at x and value at y are the same (language is
A∗sb1 . . . br A∗sb1 . . . br A∗):
EQi(x , y)

def
= (Bit i

0(x)⇔ Bit i
0(y))

EQ(x , y)
def
= s(x) ∧ s(y) ∧

r∧
i=1

EQi(x , y)

Operations on numbers

I (Value at y) is (value at x)+1: language is
r⋃

i=1

A∗s1i−10bi+1 . . . br A∗s0i−11bi+1 . . . br A∗

INC1(x , y)
def
=
∨

i

(Bit i
0(x) ∧

i−1∧
h=1

Bith
1 (x)) ⊃

(Bit i
1(y) ∧

i−1∧
h=1

Bith
0 (y) ∧

r∧
j=i+1

EQj(x , y))

I (Value at y) is 2×(value at x): language is
A∗s0h11i0bh+i+3 . . . br A∗s0h01i1bh+i+3 . . . br A∗,
together with a matching of the border positions,
when value of x is below 2r−1

Defining counters

I Consider a threshold constraint #a(x , y) = 2r

I Expand the alphabet to A× {0,1}r
(“vertical” layout rather than “horizontal”)

I An r -bit counter:
∀x , y . Suc(x , y) ⊃ (a(x) ⊃ INC1(x , y)) ∧ (¬a(x) ⊃ EQ(x , y))

I Observe that everything is done in FO2[<,Suc],
because we fixed the length of the numbers

Complexity of satisfiability

I Three colour predicates red, blue and green
I The colour at the beginning of the word, and for the first 2r

occurrences of a, is red
I For the next 2r occurrences of a is blue, then green . . .
I Change the colour cyclically red→ blue→ green→ red

each time the counter resets to zero by overflowing
I Replace constraint by an equisatisfiable FO2[Bet] formula:

a(x , y) ∧ EQ(x , y) ∧ (¬red(x , y) ∨ ¬blue(x , y) ∨ ¬green(x , y))

Theorem
Satisfiability of FO2[Th] polynomially reduces to satisfiability of
FO2[Bet]. Satisfiability of FO2[Bet] is Expspace-complete.

Addition defines betweenness

I Alphabet {0,1}2 (“vertical” layout)
I Let Double(x , y) be a “doubling” predicate,

specifying that the positions from x to y (both included)
represent vertically two numbers

(n
2×n

)
I Consider a(x) ∧ b(y) ∧ ¬(C \ {c})(x , y),

defining the word ac∗b from positions x to y
I By mapping the letter a to

(
1
0

)
, b to

(
0
1

)
and c to

(
1
1

)
,

reduce betweenness—rather its complement
“throughout”—to

(
11∗0
01∗1

)
with rows of the same length

I That is: some numbers
(n

2×n
)

defined by the formula(
1
0

)
(x) ∧

(
0
1

)
(y) ∧ Double(x , y)

Addition defines betweenness, continued

I From position x to position y ,
language ac∗b is simulated by doubling,
cc∗b and ac∗c are simulated by increment,
and cc∗c is simulated by equality

I All these are over alphabet {0,1}2

I Hence betweenness is definable using a binary predicate
Add(x , y) representing addition (over alphabet {0,1}3)
from position x to y (both included) of the form

(m
n

m+n

)

Defining addition (Chandra-Fortune-Lipton)

I With alphabet {0,1}3, let ADD be the language of words
representing vertically three numbers

(m
n

m+n

)
I Correctness: i ’th bit of sum from i ’th bit of inputs and

whether or not there is a carry into bit i
I If i ’th bit of both inputs is 1, we map the letter to a (set);

if i ’th bit of both inputs is 0, to b (reset);
else to c (neutral); think of a monoid {a,b,c}

I Carry product x · a = a, x · b = b, x · c = x (monoid U2)
I Carry into bit i + 1 of the sum exactly when the first i

monoid elements multiply to a

Defining addition, continued

I Carry computation corresponds to language c∗(ac∗bc∗)∗

I Definable in FO2[Bet], using the sentence:
∀x : (b(x) ⊃ ∃y < x : a(y)) ∧ (a(x) ⊃ ∃y > x : b(y))∧
∀y > x : (a(x) ∧ a(y) ⊃ b(x , y)) ∧ (b(x) ∧ b(y) ⊃ a(x , y)))

I Hence the language ADD is also definable in FO2[Bet]
I On the other hand the betweenness relations are definable

in FO2[<,Add] using the binary relation Add(x , y), where
the positions from x to y (both included) represent
vertically the three numbers

(m
n

m+n

)

Defining circuits

I With alphabet {0,1,or1,and2,or3, . . . ,and2k ,or2k+1, . . . }
one can encode in prefix form constant-depth boolean
circuits with inputs set to 0 and 1

I CIRC1 = or1(0 + 1)∗(0 + 1) encoding circuits of depth 1,
and

I TRUE1 = or1(0 + 1)∗1(0 + 1)∗ encoding such circuits that
evaluate to true.

I CIRC2 = and2(CIRC1)∗CIRC1 for the next level,
I TRUE2 = and2(TRUE1)∗TRUE1 for the circuits evaluating

to true, and so on.

Theorem
FO2[Bet] intersects every level of the quantifier alternation and
AC0 hierarchies (with growing alphabet).

Defining circuits

I With alphabet {0,1,or1,and2,or3, . . . ,and2k ,or2k+1, . . . }
one can encode, with one lookahead, prefix form
constant-depth boolean circuits (here depth 3)

I First level: CIRC1(x, y) = or1{0,1}{0,1}∗{and2,or1, /},
BAD1(x, y) = or1{and2,or1, /} (gates without inputs),
TRUE1(x , y) = CIRC1(x , y) ∩ A∗1A∗(x),
FALSE1(x , y) = CIRC1(x , y) ∩ A∗1A∗(x)

I Second level:
CIRC2(x, y) = and2or1{0,1,or1}∗{and2, /} ∩ A∗BAD1A∗(x),
BAD2(x, y) = and2or1{0,1,or1}∗{and2, /},∩A∗BAD1A∗(x)
FALSE2(x , y) = CIRC2(x , y) ∩ A∗FALSE1A∗(x),
TRUE2(x , y) = CIRC2(x , y) ∩ A∗FALSE1A∗(x)

I Third level:
CIRC3(x, y) = or3and2{0,1,or1,and2}∗/ ∩ A∗BAD2A∗(x),
TRUE3(x , y) = CIRC3(x , y) ∩ A∗TRUE2A∗(x),
FALSE3(x , y) = CIRC3(x , y) ∩ A∗TRUE2A∗(x)

Definability

I Regular languages of words are precisely those defined by
sentences of a monadic second-order logic
(Büchi-Elgot-Trakhtenbrot)

I Regular languages can be characterized by varieties of
finite monoids (Eilenberg)

I A syntactic monoid corresponds to a minimal automaton
for a language (Myhill-Nerode)

I FO[<] corresponds to the variety of aperiodic monoids
where for some n, for every element x we have xn = xn+1

(Schützenberger)
I For example, with n = 10:

xxxxxxxxxx = xxxxxxxxxxx
I Intuitively, first-order logic cannot count beyond a point

Two-variable definability
(Schützenberger, Thérien-Wilke)

I Consider an idempotent element e = ee
I Me is the submonoid generated by factors of e, that is,

generated by {f | e = pfq, for some p,q}
I A monoid is in variety DA iff for all idempotents e,

eMee = e
I Equivalently, any J-class with an idempotent must only

have idempotents
I FO2[<] corresponds to the variety of monoids DA
I For syntactic monoids M of languages in FO2[<,Suc], for

every idempotent e 6= 1, eMe in DA

Non-definability argument

I We know that BB1 = (ab)∗ is not definable in FO2[<]

I The language c∗(ac∗bc∗)∗, where c is called a neutral
letter, is not definable in FO2[<,Suc]

I Intuitively successor predicates can only affect local
neighbourhoods

I The logic FO2[<,Suc] is no better at defining c∗(ac∗bc∗)∗

than FO2[<] is at defining (ab)∗ (Crane Beach property)
I For BB2 = (ab)∗(a(ab)∗b(ab)∗)∗, intuitively threshold

constraints cannot keep track of differences in occurrences
of letters over many occurrences

I Can we make this formal?

Necessary condition for definability

Theorem
The syntactic monoid of a language definable in FO2[Bet]
satisfies, for every idempotent e in the monoid, that the
submonoid eMee is in DA.

Proof.
Extends (Thérien-Wilke) game arguments for FO2[<].

Two-pebble EF game for FO2[Bet]: when Spoiler makes a
move on one word responded to by Duplicator in the other
word, the set of letters between the two pebbles and the letters
at them have to be the same in both words

Summary

I Over linear orders, (Kamp) showed that binary modalities
capture FO3 properties like betweenness, and this is
sufficient for all of first-order logic

I LTL has low processing complexity, which makes it very
successful as a description language

I We have several two-variable logics with letter-counting
relations and matching temporal logics which are above
FO2[<,Suc], but below FO[<], in fact below a smaller
algebraic variety

I The logics intersect the quantifier alternation hierarchy of
FO, the until-since hierarchy of LTL, the depth hierarchy of
AC0 at all levels, but do not include all levels

I (Gabbay) Over binary relational structures (graphs) (D,R),
no finite-variable fragment captures first-order logic

Towards a descriptive FO

I There is a two-hop journey from Chennai to Seoul whose
fare is cheaper than the one-hop journey

I Going from India to Brazil via Europe or the US takes more
than a day, there is a shorter connection via Dubai and no
visa hassles

I For a week’s visit, you may prefer to stay in an apartment
(rather than a hotel), buy groceries and cook

I Useful description logics already incorporate threshold
counting features beyond two-variable logic, nominals
(used for parts of a graph above), and transitive closure
beyond first-order logic

