Verification of a Separation Kernel

Inzemamul Haque

Indian Institute of Science, Bangalore

17 July 2017

Outline

0 Introduction

© Muen

e Intel Virtualization Support
@ Challenges

e Approach

Introduction

Motivation

@ Defense and aerospace applications need to run
security-critical programs along with untrusted programs, on
the same machine.

e Commercial O/Ss have many vulnerabilities which make them
unsuitable for this task.

@ A Separation Kernel provides such a solution.

@ Would like to prove certain security properties of a separation
kernel.

@ Formal verification gives highest level of assurance that a
system satisfies a required property.

Introduction

Separation Kernel

Security—Critical
Security—Critical

Security—Critical

=
=
2]
=]
g
2
g=|
=
Q
Q
%]

Processor / Hardware

Processor / Hardware

Introduction

Objective

To give a machine-checked proof of correctness of a separation ker-
nel.

@ How does it address the security concern?

@ Security is part of the abstract model.

Introduction

Methodology

Abstract
@ Define an abstract model which
captures the correct behaviour of the Conercee

separation kernel.

Abstract

@ To show that for every execution in
the concrete there is a corresponding

execution in the abstract. : ‘
@ Inductive proof by defining an Q _
P P
abstraction relation. O

Muen

Muen Separation Kernel

Muen
Policy
File
(in XML)

Build

Muen
Tool—-chain

Processor

Subject 1 Subject 2

Subject 3

Shared
Resources

Muen Separation Kernel

Intel V'
Other normal processor features

Intel VT-d

Muen

Example Policy File

- <system>
+ <features>
<include href="common_platform.xml"/>
+ <kernelDiagnosticsDevice physical="debugconsole">
- <memory>
<include href="commeon_memery.xml"/>
<memory caching="WB" alignment="16#0020_0000#" size="16#0f60_0000#" name="nic_linux|ram"/>
<memory caching="WB" size="16#0008_0000#" name="nic_linux|lowmem"/>
<memory cachin 'WB" alignment="16#0020_0000#" size="16#0f60_0000#" name="storage_linux|ram"/>
'WB" size="16#0008_0000 "storage_linux|lowmem"/>
'WB" size="16#0001_0000#" "logbuffer_placeholder0"/>
'WB" size="16#0002_0000#" name="logbuffer_placeholder"/>

<memory caching:

"commeon_events.xml"/>
‘common_channels.xml"/>
<include href="common_components.xml"/>
- <subjects>
<include href="subject_vt.xml"/>
<include href="subject_nic_sm.xml"/>
<include href="subject_storage_sm.xml"/>
- <subject name="nic_linux" profile="linux">
<bootparams>console=hvc console=ttyS0 pci=noearly hostname=nic_linux</bootparams>
- <memory>
<memory physical="nic_|
<memory physica
<memory physical="nic_linux|ram" executable="true" writable:
</memory>
+ <devices>
+ <events>
- <channels>
<reader physical='

nux|lowmem" executable="false" writable="true" virtualAddress="16#0002_0000#" |ogical="lowmem"/:
amfs" executable="false" writable="false" virtualAddress="16#00a0_0000#" logical="initramfs"/>
rue" virtualAddress="16#00f0_0000#" logical="ram"/>

irtual_input_1" virtualAddress="16#3000#" logical="virtual_input" vector="49"/>
<writer physical="virtual_console_1" virtualAddress="16#4000#" logical="virtual_console" event="1"/>
<reader physical="testchannel_2" virtualAddress="16#00e0_0000%" |ogical="testchannel_2"/>
<writer physical="testchannel_1" virtualAddress="16#00e0_1000#" logical="testchannel_1"/>
<reader physical="testchannel_4" virtualAddress="16#00e0_2000#" logical="testchannel_4"/>
<writer physical="testchannel_3" virtualaddress="16#00e0_3000%" logical="testchannel_3"/>
</channels>

<ramnanent raf—"linnv" /%

Intel VT-x

Ring 3
(User applications)

Ring 2

Ring 1

Ring 0
(Operating System)

Privilege Rings

Muen

Ring 3
(User applications)

Ring 2

Ring 1

Ring 0
(Operating System)

VMX

non-root mode

VMX root mode (VMM)

Intel Virtualization Support

Life-cycle of a VMM

Non-root
Guest 0
mode
VM
VM Exit Entry VM Exit
Root VMXON VMXOFF
— —

mode

Intel Virtualization Support

Life-cycle of a VMM

Non-root
Guest 0
mode
VM
VM Exit Entry VM Exit
Root VMXON VMXOFF
— —

mode

How to manage states during VM-entry and VM-exit?

Intel Virtualization Support

Virtual Machine Control Structure (VMCS)

Guest O

Load guest state
from VMCS of
guest1

Update
VMCS of
guest 1

Load guest state
from VMCS of guest
0

VMXON VMXOFF >
—

Intel Virtualization Support

VMCS Data

Fields in VMCS can be classified as following:
@ Guest state area - mainly register state of the guest
@ Host state area - processor state to be loaded at VM exits

@ VM-execution control fields - fields like external interrupt
exiting, CR3 load exiting, etc.

VM-entry control fields - fields which tell what to be saved
during VM entry.

@ VMe-exit control fields - fields which tell what to be saved
during VM exit.

@ VM-exit information fields

Intel Virtualization Support

Causes of VM-Exit

@ Instructions causing unconditional exits
e INVD, CPUID, etc.
@ Instructions causing conditional exits

e HLT, if HLT-exiting field is set
e Mov from CR3, if CR3-exiting field is set

@ External interrupts if external interrupt exiting field is set.

e VMX preemption timer counts to zero.

Intel Virtualization Support

Extended Page Tables

User program
Guest Virtual Address

)

J Guest Physical Address

Host Virtual Address

Host Physical Address

.

A

Hardware

Intel Virtualization Support

Extended Page Tables

User program

Guest Virtual Address Page
RELIC]

)

} Guest Physical Address

Host Virtual Address Extended

Page
Host Physical Address Table

.

VMM

Hardware

Intel Virtualization Support

Muen Separation Kernel

Processor reset

BIOS

Bootloader

VM-—exit
handler

VM-exit

VM-entry Subject
running

Challenges

Challenges

@ Dealing with the mixture of assembly and Ada.
@ Proof for a general policy

@ Reasoning about the invariants involved

Approach

Abstract Model

@ Our model is a state transition system.

@ Policy also specifies number of CPUs and order of execution
of subjects.

@ Every subject runs on a standalone machine according to the
schedule specified in the policy.

Approach

Abstract Model

end of major frame

end of major frame

Approach

State in the Model

B

S0 S1 52 53 sS4 55
Memory Memory Memory | | Memory Memory | | Memory

Channel

R only

Register Register Register Register Register Register
I Ticks | I Ticks | I Ticks |
I Events I | Events | I Events | I Events | I Events | I Events |
I Minor Frame ptr | I Minor Frame ptr | I Minor Frame ptr |

I Major Frame ptr |

Approach

Transitions in the Model

Tick

Local operation - memory accessed by the subjects
External interrupt

Events

Read channel

Write channel

Approach

AdaCore SPARK

@ Tool to prove certain
properties of Ada
programs like

o satisfiability of pre- and
post-conditions for a

function CheckInvariants (loc : in Natural) return Boolean
is

(loc <Size)
and

(for all i in 6 .. 255 =>(for all j in © .. 255 => (PD(1,))mod 256 =0)))
and

program.
. . (for all i dn 0 .. 255 => (for all j in 6.. 255 => PD(i,j)<Size))

e checking assertions at

certain points in the o et $in'e,

‘fo[f;‘r‘aflln WH‘ 55 =

program. , e “éﬁ?so;)lf q»lmp)
o absence of run-time

errors like division by trer ot L0 0o S T 6,1 s e55361/256) <= size-2560)

. . (fnr all i in 0.. Size-1 => (if (PD(i/65536, (i mod 65536)/256) <= Size-256) then
Z€ero, da nghng polnters_ | W (PD{1/55530 (1 moa ££5260)/ 356+ (3 mod 356))-Abstenory (1))

)
with Ghost;

o Carried out small exercise
to verify virtual memory
translator.

Approach

Dealing with mixture of assembly and Ada code

@ Writing the assembly instructions as Ada functions.
@ e.g. a 64-bit register as a 64-bit modular datatype in Ada

type CPU Registers Typeéd4 is record
CRZ2 Wordéd
REX Worded
RBX Wordod

5 g s - RCX Worde4d
ype Byte is mo RDX : Wordéd

for Byte'Size use RDT Wordéd

e RSI Worded
type Word%o is meod L RRP Wordsd
for Wordl6'Size use 1¢ ROB Wordéd

- RO% : Wordé4
type MordsZ isimod Z¥E33 R10 © Wordéd
for Word3Z'Size use 3: 211 Wordsd

o R12 Wordé4d
type Wor?o4 +s mod % r12 Wordéd
for Wordé4'size use n14 Wordéd

R15 Worde4d
RFLAGS Wordéd
end record

package Assembly
is

Approach

Conclusion

@ Giving a machine checked proof of correctness of a separation
kernel

@ We have modelled the Muen separation kernel

@ Focusing on correctness of initialization part of the kernel as
of now.

@ Initially working on a fixed policy

	Introduction
	Muen
	Intel Virtualization Support
	Challenges
	Approach

