
Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Decision Tree Based Learning of Program
Invariants

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

FM Update Meeting
IIT Mandi

17 July 2017



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

What this talk is about

Paper titled

Learning invariants using decision trees and implication
counterexamples,

by Garg, Neider, Madhusudan, and Roth, in POPL 2016.

A way to automate deductive-style program verification.

Extends the Decision Tree classification technique in Machine
Learning, to handle implication samples, with applications to
finding proofs of programs.

Also talk about some directions to extend this work.



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Outline of this talk

1 Floyd-Hoare Style Verification

2 Decision Tree Learning

3 ICE Learning

4 Proofs with Multiple Invariants



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Proving assertions in programs

// Pre: 10 <= y

y := y + 1;

z := x + y;

// Post: x <= z

// Pre: true

if (a <= b)

min = a;

else

min = b;

// Post: min <= a && min <= b

// Pre: 0 <= n

int a = m;

int x = 0;

while (x < n) {

a = a + 1;

x = x + 1;

}

// Post: a = m + n

Model-checking vs Deductive Reasoning.



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Proving assertions in programs

// Pre: 10 <= y

y := y + 1;

z := x + y;

// Post: x <= z

// Pre: true

if (a <= b)

min = a;

else

min = b;

// Post: min <= a && min <= b

// Pre: 0 <= n

int a = m;

int x = 0;

while (x < n) {

a = a + 1;

x = x + 1;

}

// Post: a = m + n

Model-checking vs Deductive Reasoning.



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Floyd-Hoare Style of Program Verification

Robert W. Floyd: “Assigning meanings to programs” Proceedings
of the American Mathematical Society Symposia on Applied
Mathematics (1967)

C A R Hoare: “An axiomatic basis for computer programming”,
Communications of the ACM (1969).



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Example proof

y := y + 1

z := x + y

y ≥ 1

y ≥ 0

y ≥ 1 ∧ z = x + y

z > x

y > 10



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Example proof of add program

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

a = m + x ∧ x ≤ n

n ≥ 0

a = m + n



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Problems with automating such proofs

To check:

{y > 10}

y := y + 1;

z := x + y;

{x < z}

Use the weakest precondition rules to generate the verification
condition:

(y > 10) =⇒ (y > −1).

Check the verification condition by asking a theorem prover / SMT
solver if the formula

(y > 10) ∧ ¬(y > −1).

is satisfiable.



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

What about Programs with loops?

while (b) {

assume Pre

}

assert Post

invariant Inv

S2

S1

S3

Find an adequate and
inductive invariant Inv :

1 Pre =⇒ WP(S1, Inv)
(“inductive invariant”)

2 (Inv ∧ b) =⇒
WP(S2, Inv) (“inductive
invariant”)

3 Inv ∧ ¬b =⇒
WP(S3,Post)
(“adequate”).



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Adequate loop invariant

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

a = m + x ∧ x ≤ n

n ≥ 0

a = m + n

An adequate loop invariant needs to satisfy:

{n ≥ 0} a := m; x := 0

{a = m + x ∧ x ≤ n}.
{a = m + x ∧ x ≤ n ∧ x < n} a := a+1;

x := x+1 {a = m + x ∧ x ≤ n}.
{a = m + x ∧ x ≤ n ∧ x ≥ n} skip
{a = m + n}.

Verification conditions are generated
accordingly.

Note that a = m + x is not an adequate loop

invariant.



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Learning loop invariants

Main hurdle in automating program verification is coming up
with adequate loop invariants.

Several white-box approaches have been used (CEGAR, Lazy
Annotation, using interpolation, and tools like Slam/Blast,
Synergy).

Instead explore a black-box approach, based on a
Teacher-Learner model.

ICE: A Robust Framework for Learning Invariants

Pranav Garg1, Christof Löding2, P. Madhusudan1, and Daniel Neider2

1 University of Illinois at Urbana-Champaign
2 RWTH Aachen University

Abstract. We introduce ICE, a robust learning paradigm for synthesizing invari-

ants, that learns using examples, counter-examples, and implications, and show

that it admits honest teachers and strongly convergent mechanisms for invariant

synthesis. We observe that existing algorithms for black-box abstract interpre-

tation can be interpreted as ICE-learning algorithms. We develop new strongly

convergent ICE-learning algorithms for two domains, one for learning Boolean

combinations of numerical invariants for scalar variables and one for quantified
invariants for arrays and dynamic lists. We implement these ICE-learning algo-

rithms in a verification tool and show they are robust, practical, and efficient.

1 Introduction
The problem of generating adequate inductive invariants to prove a program correct

is at the heart of automated program verification. Synthesizing invariants is in fact the

hardest aspect of program verification—once adequate inductive invariants are synthe-

sized [1–5], program verification reduces to checking validity of verification conditions

obtained from finite loop-free paths [6–8], which is a logic problem that has been highly

automated over the years.

Invariant generation techniques can be broadly classified into two kinds: white-box

techniques where the synthesizer of the invariant is acutely aware of the precise pro-

gram and property that is being proved and black-box techniques where the synthesizer

is largely agnostic to the structure of the program and property, but works with a partial

view of the requirements of the invariant. Abstract interpretation [1], counter-example

guided abstraction refinement, predicate abstraction [9, 10], the method of Craig inter-

polants [11, 12], IC3 [13], etc. all fall into the white-box category. In this paper, we are

interested in the newly emerging black-box techniques for invariant generation.

Constraint Solver

Program
Dynamic

engine

Te
ac

he
r

L
ea

rn
er

H

+
+
+
+

+
+
+

-
-
-
-

-
-
-Learning Invariants: One prominent black-

box technique for invariant generation is the

emerging paradigm of learning. Intuitively

(see picture on the right), we have two com-

ponents in the verification tool: a white-box teacher and a black-box learner. The

learner synthesizes suggestions for the invariants in each round. The teacher is com-

pletely aware of the program and the property being verified, and is responsible for two

things: (a) to check if a purported invariant H (for hypothesis) supplied by the learner

is indeed an invariant and is adequate in proving the property of the program (typi-

cally using a constraint solver), and (b) if the invariant is not adequate, to come up with

concrete program configurations that need to be added or removed from the invariant

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 69–87, 2014.

c� Springer International Publishing Switzerland 2014



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Black-box Learning for add program

x := 0

while (x < n) {

x := x + 1

a := a + 1

}

a := m;

−

+

(m 7→ 2, n 7→ 3, a 7→ −, x 7→ −)

(2, 3, 2, 0)

(2, 3, 2,−)

(2, 3, 2, 0)

(2, 3, 3, 0)

(2, 3, 5, 3)

(2, 3, 3, 1)

(2, 3, 4, 2)
(2, 3, 5, 3)

(1, 1, 1, 0)

(1, 1, 2, 1)

(1, 1, 2, 1)

(m 7→ 1, n 7→ 1,−,−)

(1, 1, 3, 2)



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Decision Tree Based Learning

Given a set of positive samples S+ and negative samples S−,
learn a predicate H from a given concept class.

Example concept class: Boolean combinations of atomic
predicates of the form x ≤ c , where x is a prog variable and
c ≤ 10.

Or octagonal constraints +x +y ≤ c ...

A brute-force search is always possible, but we would like to
be more efficient in practice.



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Decision Tree learning algorithm

Maintain a tree whose nodes correspond to subsets of the sample
points

Root node contains all given samples

Choose a non-finished node n, and an attribute a to split on.

Create two children na and n¬a of n with corresponding subset
of samples.

If a node is “homogeneous”, mark it pos/neg and finished.

Recurse till all nodes are finished.

Output predicate corresponding to disjunction of all positive
nodes.



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Decision Tree learning by example

+

+

+
_

_

5

5

+

_

_ +

+

+

5

5

+

+
_

_

5

5

_

_ +

_

_

5

5

_

_

+

5

5

+

+

+

+
_

_

5

5

+

_

_ +

y ≤ 1

x ≤ 3

Predicate learnt: y ≤ 1 ∨ (y > 1 ∧ x > 3).



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Choosing attribute based on entropy

If n has P positive and N negative
samples:

Entropy(n) =
− P

P+N · log P+N
N − N

P+N · log P+N
P

Entropy measures reduction in
uncertainty in number of bits.

Gives us a measure of the
“impurity” of a node.

Choose attribute a which
maximizes Entropy(n)−
(Entropy(na) + Entropy(n¬a)).



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Decision Tree: Example where entropy does not do well

+

+

+ +

+

_

_

_

_

5

5

Best attribute would be y ≤ 1 followed by x ≤ 1, but entropy would choose x ≤ 3 as

first split.



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

ICE: The need for implication counterexamples

Introduced by Garg, Löding,
Madhusudan, and Neider, in a
paper in CAV 2014.

Just Examples (positive) and
Counterexamples (negative) are not
enough: the Teacher needs to give
Implication samples as well.

This way the Teacher is honest, not
precluding some candidate
invariant by an arbitrary answer.

Leads to a robust learning
framework.

while (b) {

assume Pre

}

assert Post

invariant Inv +

?

_

S2

S1

S3



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

ICE learning by example

x := 0

while (x < n) {

x := x + 1

a := a + 1

}

a := m;

+

−

(m 7→ 2, n 7→ 3, a 7→ −, x 7→ −)

(2, 3, 2, 0)

(2, 3, 2,−)

(2, 3, 2, 0)

(2, 3, 3, 0)

(2, 3, 5, 3)

(2, 3, 3, 1)
(2, 3, 4, 2)

(2, 3, 5, 3)

(1, 1, 1, 0)
(1, 1, 2, 1)

(1, 1, 2, 1)

(m 7→ 1, n 7→ 1,−,−)

(1, 1, 3, 2)

(2, 2, 4, 1)

(2, 2, 5, 2)

1 Learner conjectures H:
m ≤ n ∧ x ≤ a

2 Teacher replies with Example:
(2, 1, 2, 0).

3 Learner conjectures: a ≤ m + n

4 Teacher replies with Implication:
(2, 2, 4, 1) =⇒ (2, 2, 5, 2).

5 Learner conjectures: a = m + x

6 Teacher replies with
Counterexample: (1, 1, 3, 2)

7 Learner conjectures:
a = m + x ∧ x ≤ n

8 Teacher replies: Thanks, I found
a proof!



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

ICE learning by example

x := 0

while (x < n) {

x := x + 1

a := a + 1

}

a := m;

+

−

(m 7→ 2, n 7→ 3, a 7→ −, x 7→ −)

(2, 3, 2, 0)

(2, 3, 2,−)

(2, 3, 2, 0)

(2, 3, 3, 0)

(2, 3, 5, 3)

(2, 3, 3, 1)
(2, 3, 4, 2)

(2, 3, 5, 3)

(1, 1, 1, 0)
(1, 1, 2, 1)

(1, 1, 2, 1)

(m 7→ 1, n 7→ 1,−,−)

(1, 1, 3, 2)

(2, 2, 4, 1)

(2, 2, 5, 2)

1 Learner conjectures H:
m ≤ n ∧ x ≤ a

2 Teacher replies with Example:
(2, 1, 2, 0).

3 Learner conjectures: a ≤ m + n

4 Teacher replies with Implication:
(2, 2, 4, 1) =⇒ (2, 2, 5, 2).

5 Learner conjectures: a = m + x

6 Teacher replies with
Counterexample: (1, 1, 3, 2)

7 Learner conjectures:
a = m + x ∧ x ≤ n

8 Teacher replies: Thanks, I found
a proof!



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

ICE learning by example

x := 0

while (x < n) {

x := x + 1

a := a + 1

}

a := m;

+

−

(m 7→ 2, n 7→ 3, a 7→ −, x 7→ −)

(2, 3, 2, 0)

(2, 3, 2,−)

(2, 3, 2, 0)

(2, 3, 3, 0)

(2, 3, 5, 3)

(2, 3, 3, 1)
(2, 3, 4, 2)

(2, 3, 5, 3)

(1, 1, 1, 0)
(1, 1, 2, 1)

(1, 1, 2, 1)

(m 7→ 1, n 7→ 1,−,−)

(1, 1, 3, 2)

(2, 2, 4, 1)

(2, 2, 5, 2)

1 Learner conjectures H:
m ≤ n ∧ x ≤ a

2 Teacher replies with Example:
(2, 1, 2, 0).

3 Learner conjectures: a ≤ m + n

4 Teacher replies with Implication:
(2, 2, 4, 1) =⇒ (2, 2, 5, 2).

5 Learner conjectures: a = m + x

6 Teacher replies with
Counterexample: (1, 1, 3, 2)

7 Learner conjectures:
a = m + x ∧ x ≤ n

8 Teacher replies: Thanks, I found
a proof!



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

ICE learning by example

x := 0

while (x < n) {

x := x + 1

a := a + 1

}

a := m;

+

−

(m 7→ 2, n 7→ 3, a 7→ −, x 7→ −)

(2, 3, 2, 0)

(2, 3, 2,−)

(2, 3, 2, 0)

(2, 3, 3, 0)

(2, 3, 5, 3)

(2, 3, 3, 1)
(2, 3, 4, 2)

(2, 3, 5, 3)

(1, 1, 1, 0)
(1, 1, 2, 1)

(1, 1, 2, 1)

(m 7→ 1, n 7→ 1,−,−)

(1, 1, 3, 2)

(2, 2, 4, 1)

(2, 2, 5, 2)

1 Learner conjectures H:
m ≤ n ∧ x ≤ a

2 Teacher replies with Example:
(2, 1, 2, 0).

3 Learner conjectures: a ≤ m + n

4 Teacher replies with Implication:
(2, 2, 4, 1) =⇒ (2, 2, 5, 2).

5 Learner conjectures: a = m + x

6 Teacher replies with
Counterexample: (1, 1, 3, 2)

7 Learner conjectures:
a = m + x ∧ x ≤ n

8 Teacher replies: Thanks, I found
a proof!



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

ICE learning by example

x := 0

while (x < n) {

x := x + 1

a := a + 1

}

a := m;

+

−

(m 7→ 2, n 7→ 3, a 7→ −, x 7→ −)

(2, 3, 2, 0)

(2, 3, 2,−)

(2, 3, 2, 0)

(2, 3, 3, 0)

(2, 3, 5, 3)

(2, 3, 3, 1)
(2, 3, 4, 2)

(2, 3, 5, 3)

(1, 1, 1, 0)
(1, 1, 2, 1)

(1, 1, 2, 1)

(m 7→ 1, n 7→ 1,−,−)

(1, 1, 3, 2)

(2, 2, 4, 1)

(2, 2, 5, 2)

1 Learner conjectures H:
m ≤ n ∧ x ≤ a

2 Teacher replies with Example:
(2, 1, 2, 0).

3 Learner conjectures: a ≤ m + n

4 Teacher replies with Implication:
(2, 2, 4, 1) =⇒ (2, 2, 5, 2).

5 Learner conjectures: a = m + x

6 Teacher replies with
Counterexample: (1, 1, 3, 2)

7 Learner conjectures:
a = m + x ∧ x ≤ n

8 Teacher replies: Thanks, I found
a proof!



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

ICE learning by example

x := 0

while (x < n) {

x := x + 1

a := a + 1

}

a := m;

+

−

(m 7→ 2, n 7→ 3, a 7→ −, x 7→ −)

(2, 3, 2, 0)

(2, 3, 2,−)

(2, 3, 2, 0)

(2, 3, 3, 0)

(2, 3, 5, 3)

(2, 3, 3, 1)
(2, 3, 4, 2)

(2, 3, 5, 3)

(1, 1, 1, 0)
(1, 1, 2, 1)

(1, 1, 2, 1)

(m 7→ 1, n 7→ 1,−,−)

(1, 1, 3, 2)

(2, 2, 4, 1)

(2, 2, 5, 2)

1 Learner conjectures H:
m ≤ n ∧ x ≤ a

2 Teacher replies with Example:
(2, 1, 2, 0).

3 Learner conjectures: a ≤ m + n

4 Teacher replies with Implication:
(2, 2, 4, 1) =⇒ (2, 2, 5, 2).

5 Learner conjectures: a = m + x

6 Teacher replies with
Counterexample: (1, 1, 3, 2)

7 Learner conjectures:
a = m + x ∧ x ≤ n

8 Teacher replies: Thanks, I found
a proof!



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

ICE learning by example

x := 0

while (x < n) {

x := x + 1

a := a + 1

}

a := m;

+

−

(m 7→ 2, n 7→ 3, a 7→ −, x 7→ −)

(2, 3, 2, 0)

(2, 3, 2,−)

(2, 3, 2, 0)

(2, 3, 3, 0)

(2, 3, 5, 3)

(2, 3, 3, 1)
(2, 3, 4, 2)

(2, 3, 5, 3)

(1, 1, 1, 0)
(1, 1, 2, 1)

(1, 1, 2, 1)

(m 7→ 1, n 7→ 1,−,−)

(1, 1, 3, 2)

(2, 2, 4, 1)

(2, 2, 5, 2)

1 Learner conjectures H:
m ≤ n ∧ x ≤ a

2 Teacher replies with Example:
(2, 1, 2, 0).

3 Learner conjectures: a ≤ m + n

4 Teacher replies with Implication:
(2, 2, 4, 1) =⇒ (2, 2, 5, 2).

5 Learner conjectures: a = m + x

6 Teacher replies with
Counterexample: (1, 1, 3, 2)

7 Learner conjectures:
a = m + x ∧ x ≤ n

8 Teacher replies: Thanks, I found
a proof!



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

ICE learning by example

x := 0

while (x < n) {

x := x + 1

a := a + 1

}

a := m;

+

−

(m 7→ 2, n 7→ 3, a 7→ −, x 7→ −)

(2, 3, 2, 0)

(2, 3, 2,−)

(2, 3, 2, 0)

(2, 3, 3, 0)

(2, 3, 5, 3)

(2, 3, 3, 1)
(2, 3, 4, 2)

(2, 3, 5, 3)

(1, 1, 1, 0)
(1, 1, 2, 1)

(1, 1, 2, 1)

(m 7→ 1, n 7→ 1,−,−)

(1, 1, 3, 2)

(2, 2, 4, 1)

(2, 2, 5, 2)

1 Learner conjectures H:
m ≤ n ∧ x ≤ a

2 Teacher replies with Example:
(2, 1, 2, 0).

3 Learner conjectures: a ≤ m + n

4 Teacher replies with Implication:
(2, 2, 4, 1) =⇒ (2, 2, 5, 2).

5 Learner conjectures: a = m + x

6 Teacher replies with
Counterexample: (1, 1, 3, 2)

7 Learner conjectures:
a = m + x ∧ x ≤ n

8 Teacher replies: Thanks, I found
a proof!



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Extending Decision Tree Learning to handle implication samples

Now given S+, S−, and S =⇒ . Learn a predicate (from a given
concept class) consistent with given samples.

Challenges:

Avoid having to backtrack or
lookahead (to keep learning
efficient).

Can’t recurse on sub-nodes
independently.

Entropy alone not a good gain
hueristic.

Avoid missing potential
solutions.

+

+

5

5

+

+
_

_

5

5

_

_ +

_

_

5

5

_

_

+

5

5

+

+

+

+
_

_

5

5

+

_

_ +

y ≤ 1

x ≤ 3



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Problem with using plain entropy when implications are there

+

5

5

_
??

+

Entropy would favour x ≤ 3. However, x ≤ 4 is clearly a better choice.



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Proposed ICE Decision Tree Learning Algo

Maintain a set partial classification G of the endpoints of
implication pairs.

Process nodes sequentially.

Choose a split based on some hueristic (eg entroply +
penalty).

If a node is turned into a finished node, propagate the
classification to G .



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Experimental evaluation

Table 1: Results comparing different invariant synthesis tools. χTO indicates that the tool times out (> 10 minutes); χ indicates that the tool
incorrectly concludes that the program is buggy; χMO indicates that the tool runs out of memory; P, N, I are the number of positive, negative
examples and implications in the final sample of the resp. learner; #R is the number of rounds, and T is the time in seconds.

Program
White-box Black-box

CPAchecker Randomized Search [49] ICE-CS [25] ICE-DT-entropy ICE-DT-penalty
[12] (s) Min.(s) Max.(s) Avg.(s) + TO P,N,I #R T(s) P,N,I #R T(s) P,N,I #R T(s)

SV-COMP programs and variants [2]
array 2 0 123 18.5 + 3/10 TO 4,7,11 14 0.5 6,7,22 34 1.47 5,11,32 48 2.2
array2 2.4 0.1 384.5 105.7 + 4/10 TO 4,7,5 7 0.3 2,3,1 5 0.22 2,4,1 6 0.39
afnp χTO 0.1 0.7 0.3 + 0/10 TO 1,19,15 29 3.6 1,3,7 11 0.48 1,2,7 10 0.47
cggmp 2 — — — + 10/10 TO 1,36,50 71 51.1 1,18,45 64 3.48 1,17,42 60 3.01
countud χ — — — + 10/10 TO 3,12,7 13 1 3,10,5 17 0.69 2,9,3 13 0.51
dtuc χTO 4.9 190.4 62.8 + 2/10 TO 3,9,14 12 0.7 2,5,11 12 0.51 4,11,14 21 0.83
ex14 2.4 0 0.1 0.0 + 0/10 TO 2,5,1 7 0 1,1,0 2 0.12 1,1,0 2 0.11
ex14c 1.8 0.2 31.6 3.4 + 0/10 TO 2,2,1 4 0 2,2,0 3 0.12 2,2,0 3 0.14
ex23 5.4 0.1 127.5 21.8 + 1/10 TO 5,32,40 69 17.5 6,23,12 36 1.59 8,9,1 15 0.56
ex7 5.7 0 160.2 22.0 + 0/10 TO 1,2,1 2 0 1,1,0 2 0.12 1,1,0 2 0.09
matrixl1 3.3 — — — + 10/10 TO 2,9,3 8 0.3 6,8,2 9 0.61 6,9,2 10 0.58
matrixl1c 3 — — — + 10/10 TO 4,12,4 8 0.9 7,13,2 10 0.59 7,13,1 9 0.5
matrixl2 3.4 0.7 0.7 0.7 + 9/10 TO 8,19,13 27 22.9 8,11,8 23 1.25 9,11,6 22 1.06
matrixl2c 3.1 308 308 308.0 + 9/10 TO χTO 15,26,10 44 2.61 20,35,22 66 3.95
nc11 2.1 0 0.1 0.1 + 0/10 TO 5,15,7 18 0.7 3,6,5 13 0.58 2,4,4 9 0.39
nc11c 2.1 0.1 46.1 6.3 + 2/10 TO 4,6,3 10 0.4 3,3,3 8 0.36 3,3,3 8 0.27
sum1 1.9 270.2 270.2 270.2 + 9/10 TO 2,15,10 17 2.3 3,11,2 14 0.58 3,11,2 14 0.56
sum3 2 0 0.1 0.1 + 0/10 TO 1,3,1 4 0.1 1,4,1 6 0.31 1,4,1 6 0.31
sum4 2.2 4.7 26.8 11.4 + 0/10 TO 1,23,31 44 3.5 1,9,41 51 2.42 1,8,41 50 2.46
sum4c 2 3.1 420.2 171.2 + 6/10 TO 6,29,21 34 11.6 4,14,7 22 1.05 4,13,4 18 0.86
tacas 1.8 0 0.1 0.0 + 0/10 TO 7,8,5 14 1.7 14,10,17 38 1.65 11,8,7 23 0.81
trex1 1.9 0 90.6 9.1 + 0/10 TO 2,3,0 3 0 2,3,0 5 0.19 2,3,0 5 0.19
trex3 χ — — — + 10/10 TO 6,19,6 19 2.7 3,7,4 12 0.55 2,6,3 10 0.42
vsend 1.8 0 0.1 0.0 + 0/10 TO 1,1,0 2 0 1,1,0 2 0.14 1,1,0 2 0.11

Other programs
arrayinv1 3.8 — — — + 10/10 TO χMO 4,48,222 271 30.87 5,45,121 168 13.17
arrayinv2 4.5 0.1 56.4 16.7 + 0/10 TO 4,22,33 43 20.9 5,24,50 78 4.65 4,16,14 33 1.26
dec 15.4 0 0 0.0 + 0/10 TO 1,1,1 3 0 1,2,0 3 0.12 1,2,0 3 0.14
formula22 2 1.7 347.9 172.8 + 6/10 TO 1,18,11 22 1.8 1,16,32 49 2 1,7,20 28 1.09
formula25 2.3 9.1 163.5 56.6 + 2/10 TO 1,46,30 49 14 1,53,3 57 2.26 1,53,3 57 2
formula27 2.2 — — — + 10/10 TO χMO 1,183,18 202 9.56 1,119,11 131 5.55
inc 15.4 0 0 0.0 + 0/10 TO 3,12,101 112 1.7 3,1,102 106 4.31 3,1,100 104 3.92
inc2 1.8 0 8 0.8 + 0/10 TO 3,4,3 8 0.1 2,3,1 6 0.22 2,3,1 6 0.23
loops χTO 96.1 284.1 159.2 + 4/10 TO 4,3,10 7 0.2 2,6,11 16 0.66 2,5,10 14 0.58

Programs from [3, 27, 28, 30]
add χ — — — + 10/10 TO 1,11,0 12 0.1 2,12,1 15 0.59 2,12,1 15 0.56
cegar1 1.9 0 0.1 0.1 + 0/10 TO 1,1,1 3 0 3,1,1 5 0.17 3,1,1 5 0.22
cegar2 2.2 1.2 305.6 82.1 + 3/10 TO 4,20,14 28 9.5 4,7,8 17 0.61 5,9,14 26 0.94
dillig01 1.9 4.8 56.4 16.7 + 0/10 TO 5,15,10 17 0.7 2,4,1 6 0.27 2,4,1 6 0.23
dillig03 χTO 0.4 6.3 4.0 + 4/10 TO 2,12,9 15 1 1,3,2 6 0.22 1,4,2 7 0.37
dillig05 χTO 6.4 172.3 87.5 + 4/10 TO 3,21,25 29 4.9 2,26,3 30 1.2 2,26,3 30 1.22
dillig07 1.9 0.2 16.6 4.1 + 0/10 TO 2,6,8 13 0.3 2,4,6 12 0.47 3,4,6 13 0.41
dillig12 χTO — — — + 10/10 TO χMO 1,5,136 109 7.91 1,5,98 68 3.46
dillig15 1.9 — — — + 10/10 TO 3,8,16 22 2.9 2,3,6 10 0.37 2,3,10 14 0.5
dillig17 χTO — — — + 10/10 TO 3,15,53 34 12.7 2,6,23 21 0.87 2,6,21 21 0.95
dillig19 2.3 62.7 455.7 269.0 + 0/10 TO 4,12,18 20 8.6 5,4,17 22 0.94 3,3,7 12 0.45
dillig24 1.9 — — — + 10/10 TO 6,7,28 17 1.4 0,11,6 15 0.62 0,11,6 15 0.7
dillig25 2 — — — + 10/10 TO 1,41,96 51 14.9 1,7,276 112 11.15 1,6,130 62 3.45
dillig28 χTO 115.3 228.5 193.6 + 2/10 TO 1,5,14 11 0.2 1,4,26 19 0.75 1,3,17 14 0.59
fig1 1.9 0.5 51.2 11.1 + 4/10 TO 2,5,1 6 0.1 2,4,1 6 0.22 2,4,1 6 0.22
fig3 1.9 0.3 5.2 2.7 + 8/10 TO 2,4,2 6 0.1 4,3,0 5 0.22 4,3,0 5 0.27
fig9 1.9 0 0.1 0.0 + 0/10 TO 0,2,0 2 0 1,1,0 2 0.12 1,1,0 2 0.09
w1 1.8 0 0.2 0.1 + 0/10 TO 1,3,3 5 0 2,1,1 4 0.22 2,1,1 4 0.16
w2 1.9 0.1 223.9 27.5 + 1/10 TO 2,4,1 4 0 1,1,1 3 0.14 1,1,1 3 0.12

Programs with invariants over non-linear integer arithmetic
multiply χ — — — + 10/10 TO χMO 2,28,12 42 24.18 6,47,19 71 59.76
sqrt χ — — — + 10/10 TO 3,26,26 32 9.2 3,15,14 31 1.42 4,28,14 43 1.97
square χ — — — + 10/10 TO χMO 1,8,2 11 0.41 1,8,2 11 0.42

Invariant synthesis in a deductive-verification setting
array_diff — — 2,2,2 4 0.07 2,2,0 3 0.14 2,2,0 3 0.14
cpm1 — — — 2,4,0 5 2.78 2,4,0 5 2.81
cpm2 — — — 1,8,11 20 7.37 1,8,11 20 7.08
Aggregate 41 / 58 programs 39 / 58 programs 50 / 58 programs 58 / 58 programs 58 / 58 programs



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

What about proofs that require multiple annotations?

Multiple (sequential or nested) while loops can be handled
with ICE counterexamples.

Some “modular” proofs of programs may need Horn
implications

Programs with procedure calls
Owicki-Gries style proofs of concurrent programs
Rely-Guarantee proofs



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Some proofs needing Horn implications

main() {

x := y := 0;

while (x < 10) {

y := y + 1;

f();

}

assert (x == 2y)

}

f() {

x := x + 2;

}

Pre: x = y = 0

T1 || T2

P0 while (*) { Q0 while (*) {

P1 if (x < y) Q1 if (y < 10)

P2 x := x + 1; Q2 y := y + 3

P3 } Q3 }

P4 Q4

Post: x <= y



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Example Rely-Gaurantee Proof

Pre: x = y = 0

T1 || T2

P0 while (*) { Q0 while (*) {

P1 if (x < y) Q1 if (y < 10)

P2 x := x + 1; Q2 y := y + 3

P3 } Q3 }

P4 Q4

Post: x <= y

Adequacy Inductiveness
1. (x = 0 ∧ y = 0)→ P0 1. P0→ P1 ∧ P4
2. P4 ∧ Q4→ (x ≤ y) 2. P1 ∧ (x < y)→ P2

3. P2 ∧ [x := x + 1]→ P3′

4. P3→ P0
· · ·

Stability Guarantee
1. P0 ∧ G2→ P0′ 1. P2 ∧ [x := x + 1]→ G1
2. P1 ∧ G2→ P1′ 2. Q2 ∧ [y := y + 3]→ G2

· · ·



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Horn Counterexamples

〈Q4, 2, 1〉2

False

〈P4, 2, 1〉1

〈P0, 0, 0〉11

〈G2, 0, 0,−1, 0〉10

〈P1, 0, 0〉12

〈G2, 0, 0, 1, 1〉6

〈P2, 0, 0〉7

〈P2, 1, 1〉5

〈P0, 2, 1〉3

〈P1,−1, 0〉8

〈P3, 2, 1〉4

〈P0,−1, 0〉9

True

How does one extend Decision Tree Learning to handle such a setting?



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Conclusion

Program verification is important if we want high assurance of
the correctness of our programs.

Coming up with adequate invariants is crucial to be able to
automate Floyd-Hoare style verification.

ICE framework for learning invariants.

Extending popular Decision Tree Learning to ICE samples.

Challenges in extending to multiple invariants.

Thank you for your attention!



Floyd-Hoare Style Verification Decision Tree Learning ICE Learning Proofs with Multiple Invariants

Conclusion

Program verification is important if we want high assurance of
the correctness of our programs.

Coming up with adequate invariants is crucial to be able to
automate Floyd-Hoare style verification.

ICE framework for learning invariants.

Extending popular Decision Tree Learning to ICE samples.

Challenges in extending to multiple invariants.

Thank you for your attention!


	Floyd-Hoare Style Verification
	Decision Tree Learning
	ICE Learning
	Proofs with Multiple Invariants

