Decision Tree Based Learning of Program
Invariants

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

FM Update Meeting
T Mandi
17 July 2017

What this talk is about

Paper titled

Learning invariants using decision trees and implication
counterexamples,

by Garg, Neider, Madhusudan, and Roth, in POPL 2016.

@ A way to automate deductive-style program verification.

@ Extends the Decision Tree classification technique in Machine
Learning, to handle implication samples, with applications to
finding proofs of programs.

Also talk about some directions to extend this work.

Outline of this talk

© Floyd-Hoare Style Verification
© Decision Tree Learning
© ICE Learning

@ Proofs with Multiple Invariants

Floyd-Hoare Style Verification

Proving assertions in programs

//

//

Pre: 10 <=y
=y +1;
=x+y;
Post: x <= z

// Pre: true
if (a <= b)
min = a;
else
min = b;
// Post: min <= a && min <= b

// Pre: 0 <= n

int a = m;
int x = 0;
while (x < n) {
a=a+1;
x =x + 1;

}

// Post: a=m+n

Floyd-Hoare Style Verification

Proving assertions in programs

//

//

Pre: 10 <= y // Pre: true
=y +1 if (a <= b)
=x +y; min = a;
else
Post: x <= z min = b;
// Post: min <= a && min <= b

Model-checking vs Deductive Reasoning.

// Pre: 0 <= n

int a = m;
int x = 0;
while (x < n) {
a=a+1;
x =x + 1;

}

// Post: a=m+n

Floyd-Hoare Style Verification

Floyd-Hoare Style of Program Verification

Robert W. Floyd: “Assigning meanings to programs” Proceedings
of the American Mathematical Society Symposia on Applied
Mathematics (1967)

C A R Hoare: "An axiomatic basis for computer programming”,
Communications of the ACM (1969).

Floyd-Hoare Style Verification

Example proof

y +1

T~

y > 10
y=20

y>1Az=x+y

z>X

Floyd-Hoare Style Verification

Example proof of add program

a=m+xAx<n

while (x < n) {

Floyd-Hoare Style Verification

Problems with automating such proofs

To check:

{y > 10}

y =y +1;
zZ ;=X +Yy;

{x <z}

Use the weakest precondition rules to generate the verification
condition:
(y >10) = (y > —1).

Check the verification condition by asking a theorem prover / SMT
solver if the formula

(y > 10) A =(y > —-1).

is satisfiable.

Floyd-Hoare Style Verification

What about Programs with loops?

assume Pre Flnd an adequate and
inductive invariant Inv:
S
' Q Pre = WP(S51,Inv)
~ (invariant [1av) (“inductive invariant™)
while (b) {

Q@ (InvAb) =

WP(Sz, Inv) (“inductive
invariant™)
: Q@ IhvA-b =
(“adequate”).

assert Post

Floyd-Hoare Style Verification

Adequate loop invariant

An adequate loop invariant needs to satisfy:

' @ {n>0}a :=m; x :=0
h>0Aa—m {a=m+xAx<n}
@ {a=m+xAx<nAx<n}a :=atl;
x =0 x 1= x+1 {a=m+xAx<n}.

while (x < n) {

(a=m+n

a=m+xAx<n

@ {a=m+xAx<nAx>n} skip
{a=m+ n}.

Verification conditions are generated
accordingly.

Note that a = m + x is not an adequate loop

invariant.

Floyd-Hoare Style Verification

Learning loop invariants

@ Main hurdle in automating program verification is coming up
with adequate loop invariants.

@ Several white-box approaches have been used (CEGAR, Lazy
Annotation, using interpolation, and tools like Slam/Blast,

Synergy).
@ Instead explore a black-box approach, based on a
Teacher-Learner model.

Program Dynqmlc
engine

Constraint Solver

Teacher
Learner

Floyd-Hoare Style Verification

Black-box Learning for add program

(m—2,n—3,a—~ —, x— —)
} (m—1,n—1,—,—)

\ (2,3,2, —)

.

(2,3,3,1) (1,1,2,1)
v \ (2,3,4,2)
while (x < n) {

(2,3,2,0)

(2,3,3,0)

(2,3,5,3) (1,1,2,1)

Decision Tree Learning

Decision Tree Based Learning

@ Given a set of positive samples ST and negative samples S,
learn a predicate H from a given concept class.

@ Example concept class: Boolean combinations of atomic
predicates of the form x < ¢, where x is a prog variable and
c < 10.

Or octagonal constraints *x Ty < c...

A brute-force search is always possible, but we would like to
be more efficient in practice.

Decision Tree Learning

Decision Tree learning algorithm

Maintain a tree whose nodes correspond to subsets of the sample

points
@ Root node contains all given samples
@ Choose a non-finished node n, and an attribute a to split on.
@ Create two children n, and n—, of n with corresponding subset
of samples.
@ If a node is “homogeneous”, mark it pos/neg and finished.
@ Recurse till all nodes are finished.
@ Output predicate corresponding to disjunction of all positive

nodes.

Decision Tree Learning

Decision Tree learning by example

Predicate learnt: y <1V (y > 1A x> 3).

Decision Tree Learning

Choosing attribute based on entropy

If n has P positive and N negative

samples:
Entropy(n) =
PJ%N Iog%—m log £5N
@ Entropy measures reduction in 2
uncertainty in number of bits. %

Entropy =-p log,p —qlog,q

@ Gives us a measure of the
“impurity” of a node.

@ Choose attribute a which
maximizes Entropy(n) — Entropy = -0.5 log,0.5 — 0.5 log,0.5 = 1
(Entropy(n,) + Entropy(n-5,)).

Decision Tree Learning

Decision Tree: Example where entropy does not do well

l

W

Best attribute would be y < 1 followed by x < 1, but entropy would choose x < 3 as
first split.

ICE Learning

ICE: The need for implication counterexamples

@ Introduced by Garg, Loding,

Madhusudan, and Neider, in a assume Pre 3
paper in CAV 2014. -

S1 “

@ Just Examples (positive) and)
invariant |Inv +

Counterexamples (negative) are not wnile () (-),

enough: the Teacher needs to give // A
. . S /
Implication samples as well. i
} [
@ This way the Teacher is honest, not {
precluding some candidate

invariant by an arbitrary answer. \,

assert Post

@ Leads to a robust learning
framework.

ICE Learning

ICE learning by example

@ Learner conjectures H:
m<nAx<a

(mw—2,n—3,a— —,x+— —)
J (m—1,n—1,—,—)
a :=m
‘ (2,3,2,-)
x =0
+
(2,2,4,1)
— (2,3,2,0) (1,1,1,0) \
\ (2,3,3,1) (1,1,2,1) \\
(2,3, 4,
A ey
while (x < n)| {
a 1
(2,3,3,0)
x 1

(2,3,5,3) (1,1,2,1)

ICE Learning

ICE learning by example

@ Learner conjectures H:
m<nAx<a

(mw—2,n—3,a— —,x+— —)
| (mes 1,ne 1, —, =) @ Teacher replies with Example:
ai=m; (2,1,2,0).
‘ (2,3,2, —)
x =0
+
(2,2,4,1)
— (2,3,2,0) (1,1,1,0) \
\ (2,3,3,1) (1,1,2,1) \\
%3)/ 2,2,5,2)
while (x < n)| { _
(2,3,2,0)
a 1
(2,3,3,0)
x 1

(2,3,5,3) (1,1,2,1)

ICE Learning

ICE learning by example

@ Learner conjectures H:
m<nAx<a

(mw—2,n—3,a— —,x+— —)
| (m= 1,0 1, —, —) @ Teacher replies with Example:
ai=m; (2,1,2,0).
‘ @32-) © Learner conjectures: a< m+n
x =0
+
(2,2,4,1)
— (2,3,2,0) 1,1,1,0) \
\ 2, 3 3, 1) (1,1,2,1) \\
while (x < n)| { _
(2.3,2,0)
a 1
(2,3,3,0)
x 1

(2,3,5,3) (1,1,2,1)

ICE Learning

ICE learning by example

@ Learner conjectures H:
m<nAx<a

(mw—2,n—3,a— —,x+— —)
| (m= 1,0 1, —, —) @ Teacher replies with Example:
ai=m (2,1,2,0).
(2,3,2,) oL : .
earner conjectures: a < m+n
x =0 i @ Teacher replies with Implication:
2,2,4,1
. .3,2,0) 1,1,1,0) (N) (2,2,4,1) = (2,2,5,2).
\ 2, 3 3, 1) (1,1,2,1) \\
while (x < n)| { _
(2.3,2,0)
a 1
(2,3,3,0)
x 1

(2,3,5,3) (1,1,2,1)

ICE Learning

ICE learning by example

@ Learner conjectures H:
m<nAx<a
(mw—2,n—3,a— —,x+— —)
| (mes 1,ne 1, —, =) @ Teacher replies with Example:
ai=m (2,1,2,0).
‘ @32) © Learner conjectures: a< m+n
x =0 + @ Teacher replies with Implication:
2,2,4,1
— ©,3,2,0) 1,1,1,0 @241 (2,2,4,1) = (2,2,5,2).
\ @ i 2 i) 2 @121 \ © Learner conjectures: a = m + x
wn/ (2,2,5,2)
while (x < n)| { _
(,3,2,0)
a 1
(2,3,3,0)
x 1

(2,3,5,3) (1,1,2,1)

ICE Learning

ICE learning by example

(mw—2,n—3,a— —,x+— —)
J (m—1,n—1,—,—)

‘ (2,3,2,-)

(2,3,2,0)

2342
(2,3,5,3)
while (x < n) {

(2,3,2,0)

(2,3,3,0)

(2,3,5,3) (1,1,2,1)

(1,1,1,0)
\ (2,3,3,1) (1,1,2,1) \

Learner conjectures H:
m<nAx<a

Teacher replies with Example:
(2,1,2,0).

Learner conjectures: a < m+n
Teacher replies with Implication:
(27 2747 1) :> (27 27 57 2)'
Learner conjectures: a = m+ x

Teacher replies with
Counterexample: (1,1,3,2)

ICE Learning

ICE learning by example

Learner conjectures H:
m<nAx<a

(mw—2,n—3,a— —,x+— —)
J (M 1,01, —, —) Teacher replies with Example:
(2,1,2,0).

‘ 23,2,) Learner conjectures: a < m+n

Teacher replies with Implication:
(2,2,4,1) = (2,2,5,2).

Learner conjectures: a = m+ x

~
-
IS
=

—— (2,3,2,0)

(1,1,1,0)

\ (2,3,3, 1) (1,1,2,1) .
2 3,4,

while (x < n)| {

(2,3,2,0)

(2,3,3,0)

e

Teacher replies with
Counterexample: (1,1,3,2)

© 00 00 © ©

Learner conjectures:
a=m+xAx<n

(2,3,5,3) (1,1,2,1)

ICE Learning

ICE learning by example

Learner conjectures H:
m<nAx<a

(mw—2,n—3,a— —,x+— —)
J (me—1,n—1,—,—) Teacher replies with Example:
ai=m (2,1,2,0).
‘ 23,2, Learner conjectures: a < m+n
x =0 + Teacher replies with Implication:
(22,41 (2,2,4,1) = (2,2,5,2).

~

(2,3,2,0)

(1,1,1,0)
\ (2,3,3,1) (1,1,2,1) .
(2,3, 4,

w (2,2,5,
while (x < n) {

(2,3,2,0)

(2,3,3,0)

Learner conjectures: a = m+ x

Teacher replies with
Counterexample: (1,1,3,2)
Learner conjectures:
a=m+xAx<n

© © 060 00 © ©

Teacher replies: Thanks, | found
a proof!

(2,3,5,3) (1,1,2,1)

ICE Learning

Extending Decision Tree Learning to handle implication samples

Now given ST, S, and S = . Learn a predicate (from a given
concept class) consistent with given samples.

Challenges:

@ Avoid having to backtrack or
lookahead (to keep learning
efficient).

@ Can't recurse on sub-nodes
independently.

@ Entropy alone not a good gain
hueristic.

@ Avoid missing potential
solutions.

ICE Learning

Problem with using plain entropy when implications are there

Entropy would favour x < 3.

However, x < 4

W

is clearly a better choice.

ICE Learning
Proposed ICE Decision Tree Learning Algo

@ Maintain a set partial classification G of the endpoints of
implication pairs.

@ Process nodes sequentially.

@ Choose a split based on some hueristic (eg entroply +
penalty).

@ If a node is turned into a finished node, propagate the
classification to G.

ICE Learning

Experimental evaluation

Table 1: Results comparing different invariant synthesis tools. X.po indicates that the tool times out (> 10 minutes); x indicates that the t
incorrectly concludes that the program is buggy; Xp1o indicates that the tool runs out of memory; P, N, I are the number of positive, negaf
examples and implications in the final sample of the resp. learner; #R is the number of rounds, and 7" is the time in seconds.

White-box Black-box
Program CPAchecker Randomized Search [49] [ICE-CS [25] [ICE-DT-entropy [ICE-DT-penalty
[12] (s) Min.(s) Max.(s) Avg.(s) + TO H PN.I #R T(s) H PN.I #R T(s) H PN.I #R T(s
SV-COMP programs and variants [2]
array 2 0 123 18.5 + 3/10 TO 47,11 14 0.5 6,722 34 1.47 511,32 48
array2 0.1 3845 105.7+4/10 TO 47,5 7 0.3 23,1 5 0.22 24,1 6
afnp 0.1 0.7 0.3+0/10 TO 1,19,15 29 3.6 13,7 1048 12,7 10
cggmp — — —+10/10 TO 1,36,50 71 511 1,18.45 64 3.48 1,17,42 60
countud — — —+10/10 TO 3,127 13 1 3,105 17 0.69 293 13
dtuc 4.9 62.8 +2/10 TO 39,14 12 0.7 2,511 12051 || 411,14 21
ex14 0 0.0 +0/10 TO 2.5.1 7 0 1.1.0 2 0.12 11,0 2
exlde 0.2 3.4+0/10TO 2,21 4 0 2,2,0 3 0.12 22,0 3
ex23 0.1 21.8+1/10 TO 532,40 69 175 || 623,12 36 159 89,1 15
ex7 0 22.0+0/10 TO 1.2.1 2 0 11,0 2 0.12 1.1,0 2
matrixl1 — — —+10/10 TO 293 8 0.3 6.8.2 9 0.61 69,2 10
matrixllc — — —+10/10TO 4,124 8 0.9 7,132 10 059 7,13,1 9
matrix12 0.7 0.7 0.7 +9/10 TO 8,19.13 27 229 8.11.8 23 1.25 9.11.,6 22
matrix12c 308 308 308.0 +9/10 TO XTo 15,26,10 44 2.61 20,3522 66
nell 0 0.1 0.1 +0/10 TO 5,157 18 13 244 9
ncllc 0.1 46.1 6.3+2/10 TO 4,63 10 8 333 8
suml 270.2 2702 270.2+9/10 TO 2,15,10 17 14 3,112 14
sum3 0 0.1 0.1 +0/10 TO 4 6 14,1 6
sum4 4.7 26.8 11.4+0/10 TO 44 51 1,841 50
sumdc 3.1 4202 171.2+6/10 TO 34 22 18

Proofs with Multiple Invariants

What about proofs that require multiple annotations?

@ Multiple (sequential or nested) while loops can be handled
with ICE counterexamples.
@ Some “modular” proofs of programs may need Horn
implications
e Programs with procedure calls
o Owicki-Gries style proofs of concurrent programs
o Rely-Guarantee proofs

Proofs with Multiple Invariants

Some proofs needing Horn implications

main() {
x =y :=0;
while (x < 10) {
yi=y+ 1
£0;
}
assert (x == 2y)

}

£O {
X 1= X + 2;

}

PO
P1
P2
P3
P4

T1 I

while (*) {
if (x < y)
X =X + 1;

T2

Q0 while (*) {
Q1 if (y < 10)
Q2 y =y +3

Post: x <=y

Proofs with Multiple Invariants

Example Rely-Gaurantee Proof

T1 Il T2
PO while () { Q0 while (*) {
P1 if (x < y) Q1 if (y < 10)
P2 X :=x + 1; Q2 y =y +3
P3 } Q3 7
P4 Q4
Post: x <=y
Adequacy Inductiveness
1. (x=0Ay=0)—P0 | 1. PO— PLAP4
2. PANQE— (x<Yy) 2. PIA(x<y)— P2
3. P2A[x:=x+1]— P3¥
4. P3— PO
Stability Guarantee
1. POAG2— PO 1. P2Ax=x+1]—G1
2. PLAG2— PV 2. QR2A[y:=y+3]— G2

Proofs with Multiple Invariants

Horn Counterexamples

True

(PO, 0,0)11 ~(P1,0,0)1»
\ (PO, —1,0)g ———
(G2,0,0, —1,0)10/

’~—(P1, —1,0)g =
<P2,0,0>7\c
<52,0,o,1,1>6/

[(P0,2,1)3 (P3,2,1)4
(P4,2,1)1 \
=False
(Q4,2,1) /

(P2,1,1)5 ——

How does one extend Decision Tree Learning to handle such a setting?

Proofs with Multiple Invariants

Conclusion

Program verification is important if we want high assurance of
the correctness of our programs.

Coming up with adequate invariants is crucial to be able to
automate Floyd-Hoare style verification.

ICE framework for learning invariants.

Extending popular Decision Tree Learning to ICE samples.

Challenges in extending to multiple invariants.

Proofs with Multiple Invariants

Conclusion

Program verification is important if we want high assurance of
the correctness of our programs.

Coming up with adequate invariants is crucial to be able to
automate Floyd-Hoare style verification.

ICE framework for learning invariants.

Extending popular Decision Tree Learning to ICE samples.

Challenges in extending to multiple invariants.

Thank you for your attention!

	Floyd-Hoare Style Verification
	Decision Tree Learning
	ICE Learning
	Proofs with Multiple Invariants

