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 Formal verification
•  Checks whether a design satisfies the requirements (properties)
    defined for the model?

•  Is a way to verify programs by mathematical proving that the
    program’s post condition will hold as long as the precondition
holds

Model checking  

•  Developed independently by Clarke and Emerson and by Queille
   and Sifakis in early 1980’s.

•  Properties are written in propositional temporal logic

•  Systems are modeled by finite state machines

•  Verification procedure is an exhaustive search of the state space
    of the design

•  Model checking complements testing/simulation

Introduction to formal verification and model checking 



• TI and TO are the two sensors on the approach side of the line.

• Train driver should stop the train at a red light and proceed when the
   light is green

A level crossing control system 



• Car driver should stop their vehicles when the light is red and do not
 
   proceed until the light changes to green.

• Cars making legitimate use of the crossing are sensed and are
   counted in and out

Global model
The top-level safety requirement or ‘global model’ 

is that there should never be a train and a car
 inside the crossing at the same time.

A level crossing control system contd.. 



Global model can be achieved by the following lower level
constraints

For every train, if it is outside the crossing and the approach light is
red, train remains outside unless approach light turns back to green.

For every train, if it is before TI and in light is red, train does not
crosses unless in light turns back to green.

Once the road light has been switched to red, cars in the crossing
will be allowed to leave before the barrier is lowered.

A level crossing control system contd.. 



Once the road light has been switched to red, cars outside the
crossing will not be allowed to enter into crossing.

Once the road light has been switched to green, cars outside the
crossing will be allowed to enter into crossing.

If the crossing is open for cars, the road light must be green and the
approach light must be red and there must be no train in the crossing.

If the gates are closed, the road light must be red.

A level crossing control system contd.. 



A level crossing control system: Architecture



 The calculus of communication systems (CCS) is a process
calculus introduced by Robin Milner around 1980

  Is an algebra for specifying and reasoning about concurrent
systems

  Provides a set of terms, operators and axioms that can be used to
write and manipulate algebraic expressions

  The Concurrency WorkBench (CWB) is a public domain,
interactive tool based on CCS which is used to analyze CCS
specifications.

Introduction to CCS



CCS Specifications for several processes
proc TAS = t_a . 'a . TAS
proc TIS = t_i . 'i . TIS
proc TOS = t_o . 'o . TOS
 
proc TAL_RED = 'send_a_red . change_a . TAL_GREEN
proc TAL_GREEN = 'send_a_green . change_a .
TAL_RED
proc TIL_RED = 'send_i_red . change_i . TIL_GREEN
proc TIL_GREEN = 'send_i_green . change_i . TIL_RED
 
proc TA = send_a_red . TA + send_a_green . 't_a .
TRAIN_IN

proc TRAIN_IN = send_i_red . TRAIN_IN + send_i_green
. 't_i . TRAIN_OUT

proc TRAIN_OUT = 'train_in . 'train_out . 't_o . TA
 
proc RS = send_r_red . 'sent . STOP_VEHICLE +
send_r_green . START_VEHICLE

proc STOP_VEHICLE = send_r_green . 'sent . RS
proc START_VEHICLE = 'vehicle_in . VEHICLES_ONE
+ send_r_red . 'sent . STOP_VEHICLE
 

proc VEHICLES_ONE = 'vehicle_in . VEHICLES_TWO
+ 'vehicle_out . RS

proc VEHICLES_TWO = 'vehicle_out . VEHICLES_ONE
 
proc RL_RED = 'send_r_red . RL_RED + change_r .
'send_r_green . RL_GREEN

proc RL_GREEN = 'send_r_green . RL_GREEN +
change_r . 'send_r_red . RL_RED

proc GATE = movegate . 'ack . GATE
 
proc CS = a . 'change_a . 'change_r . sent . 'movegate .
ack . 'change_i . i . 'change_i . o . 'movegate . ack .
'change_r . Sent . 'change_a . CS 
 
proc CROSSING = TA | TAS | TIS | TOS | TAL_GREEN |
TIL_RED | CS | TIL_GREEN | GATE | RS \ {a, i, o, t_a,
t_i, t_o, 
change_a, change_i, change_r, send_a_green, send_a_red,
send_i_green, send_i_red, send_r_red, send_r_green, sent,
movegate, ack}



For every train, if it is outside the crossing and the approach light is
red, train remains outside unless approach light turns back to green.

Which means
Once approach light is red the train stops and it will not send any
further signal to the next sensor(TIS)

Verification Formula could be

prop Can_Send_ta = min Y = <t_a> tt <-> Y

prop Approach_Light_red = AG(([send_a_red] (not
Can_Send_ta))

([send_a_green] (Can_Send_ta)))

CCS Verification – Formula 1



For every train, if it is before TI and in light is red, train does not
crosses unless in light turns back to green.

Which means
Once approach light is green the train enters into approach section and
send further signal to the next sensor(TIS)

Verification Formula could be

prop Can_Send_ti = min Y = <t_i> tt <-> Y

prop In_Light_red = AG(([send_i_red] (not Can_Send_ti))
([send_i_green] (Can_Send_ti)))

CCS Verification – Formula 2



Once the road light has been switched to red, cars in the crossing will
be allowed to leave before the barrier is lowered.

Verification Formula could be

prop Accident_prevention = (not <send_r_red>tt)
AG([vehicle_in]

EF(<vehicle_out>tt / <movegate>tt))

CCS Verification - Formula 3



Once the RLight (road light) has been switched to red, cars outside the
crossing will not be allowed to enter into crossing.

Verification Formula could be

prop Car_Not_Allowed = AG([send_r_red](not
Can_Vehicle_In))

CCS Verification - Formula 4



Once the RLight (road light) has been switched to green, cars outside
the crossing will be allowed to enter into crossing.

Verification Formula could be

 

prop Car_Allowed = AG([send_r_green](Can_Vehicle_In))

CCS Verification - Formula 5



If the crossing is open for cars, the RLight must be green and the
ALight must be red and there must be no train in the crossing.

Verification Formula could be

prop Crossing_Open = (not<vehicle_in>tt) 
AG(<send_a_red>tt /

<send_r_green>tt)

CCS Verification - Formula 6



If the gates are closed, the RLight must be red.

Verification Formula could be

prop Gate_Close = (Crossing_Open)
 AG((not<vehicle_in>tt) /

(<send_r_red>tt))

CCS Verification - Formula 7



In the model there should not be a deadlock. The below property will
give false while executing unlike all other properties which gives true.

Verification Formula could be

prop Can_Deadlock = min X = [-]ff <->X

CCS Verification - Formula 8



•  MCRL2 is a formal specification language with an associated toolset

•  The toolset can be used for modeling, validation and verification of

concurrent

    systems and protocols

A glimpse of MCRL2



Equivalent MCRL2 code

sort light=struct Red|Green;

act  send_a,  send_a', rsend_a, send_i, send_i',  rsend_i,
send_r, send_r', rsend_r : light;

act t_a, t_a', rt_a, a, a', ra, i', ri,  o', ro, t_i, t_i', rt_i, i, t_o,
t_o', rt_o, o, change_a, change_a', rchange_a, change_i,
change_i', rchange_i, train_in, train_in', train_out',
train_out, change_r, change_r', rchange_r, movegate',
movegate, rmovegate, done, done', rdone, sent, sent', rsent,
car_in, car_in', car_out, car_out';

map change_val: light -> light;

var m:Int;
eqn change_val(Red)=Green;

change_val(Green)=Red;

proc TA=t_a.a'.TA;

proc TI=t_i.i'.TI;

proc TO=t_o.o'.TO;

proc
Alight(x:light)=send_a'(x).change_a.Alight(change_val(x))

proc
Ilight(y:light)=send_i'(y).change_i.Ilight(change_val(y));

proc Atrain=send_a(Red).Atrain +
send_a(Green).t_a'.Itrain;

proc Itrain=send_i(Red).Itrain + send_i(Green).t_i'.Ctrain;

proc Ctrain=train_in'.train_out'.t_o'.Atrain;

proc Rsensor=send_r(Red).sent'.Stop + send_r(Green).Go;

proc Stop=send_r(Green).sent'.Rsensor;

proc Go=car_in'.Cars(1) + send_r(Red).sent.Stop;

proc Cars(m:Int)=(m > 0 && m < 3) -> (car_in'.Cars(m+1)
+ car_out'.(m==1)->Rsensor <> Cars(m-1)) <> delta;

proc Gate=movegate.done'.Gate;

proc
Control=a.change_a'.change_r'.sent.movegate'.done.change
_i'.i.change_i'. 

 proc Rlight(z:light)=send_r'(z).Rlight(z) +
change_r.send_r'(change_val(z)).Rlight(change_val(z));



Equivalent MCRL2 code contd..

proc Crossing = Atrain || TA || TI || TO || Alight(Green) || 

Ilight(Red) || Control || Rlight(Green) || Gate || Rsensor;

  init hide(
 

{ra, ri, ro, rt_a, rt_i, rt_o, rchange_a, rchange_i, rchange_r, 

rsend_a, rsend_i, rsend_r, rsent, rmovegate, rdone },

allow( {   
         train_in, train_in', train_out, train_out', car_in, 

car_in', car_out, car_out', ra, ri, ro, rt_a, rt_i, rt_o, 

rchange_a, rchange_i, rchange_r, rsend_a,  rsend_i, 

rsend_r, rsent, rmovegate, rdone 
   },

 comm( {         a | a' -> ra,      i | i' -> ri,

                         o | o' -> ro,         t_a | t_a' -> rt_a,

   t_i | t_i' -> rt_i,       t_o | t_o' -> rt_o,

    change_a | change_a' -> rchange_a,

    change_i | change_i' -> rchange_i,

    change_r | change_r' -> rchange_r,

           send_a | send_a' -> rsend_a,

           send_i | send_i' -> rsend_i,

           send_r | send_r' -> rsend_r,
           sent | sent' -> rsent,
           movegate | movegate' -> rmovegate,
           done | done' -> rdone

},
   Crossing        
 )));  



For every train t, if t is outside the crossing and the approach light is
red, t remains outside unless it ‘sees’ the green light.

Which means
Once approach light is red the train stops and it will not send any
further signal to the next sensor(Itrain)

Verification Formula could be

[true*][send_a(Red)]<!t_a‘>[send_a(Green)]<t_a‘>true

Verification



For every train t, if t is outside the crossing and the in light is red, t remains
outside unless it ‘sees’ the green light.

Which means
Once in light is red the train stops and it will not send any further signal to
the next process

Verification Formula could be

 [true*] [send_i(Red).!t_i'] [send_i(Green).t_i']true

Verification contd..



Verification contd..

After the road light has been switched to red, cars in the crossing will be
allowed to leave before the barrier is lowered

Which means

After the road light has been switched to Red, no cars will be allowed to
enter into the crossing whereas if it has been switched to green cars will
be allowed to enter as well as to exit from other end

Verification Formula could be

 

 [true*] [send_r(Red)] <sent'> [send_r(Red)] !

<car_in‘><car_out'> [send_r(Green)] <car_in‘><car_out'> true



Deadlock and Livelock

This formula expresses that there is no deadlock for all the reachable states.
 

[true*]<true>true

This formula expresses that there is no livelock for all the reachable states.
 

[true*]mu X.[tau]X



For every train t, it follows the following sequence of actions.
•  Train receives green approach light

•  Train approach light sends green to TAS(Train approach sensor)

•  TAS sends green to TIS(Train in sensor)

•  TOS(Train out sensor) sends red to control once train goes out of the
    crossing

[true*][send_a(Green)]<t_a‘><send_i_green>
<t_i’><train_in’><train_out’><t_o’>true

 

Verification 
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