
Sathya Peri
IIT Patna

sathya@iitp.ac.in

1

Understanding the Requirements of
STMs

Outline
�  Motivation for Software Transactional Memory
�  Drawbacks of locks
�  Program Support for STMs
�  Intuitive Requirements of STMs
�  Formal Definition of a Correctness Criterion – Simpler Case
�  Formal Definition – General Case
�  Conclusion

2

Performance limits of single processors
�  Software systems performance increase in last few decades

�  Increase in CPU clock frequencies

�  Limits in the increase of clock frequencies of CPUs in the last
few years

�  Obtain higher performance:
�  Packing more processors into a single chip
�  They are called multi-core CPUs

3

Parallel Processing Applications
�  To achieve better performance with multi-core CPUs

�  Applications programmed to take advantage of the underlying parallelism

�  Commonly achieved by employing multi-threading
�  Multiple threads of control execute concurrently
�  Multi-threading can efficiently utilize the multi-core CPUs

4

Bank Transfer Example: Difficulty with
parallel programming
 T1 Time T2

 1 Read B1
 2 B1 :=

B1 – 1000
 3 Write

B1
sum := 0 4
Read B1 5
Read B2 6
sum := sum + B1 7
sum := sum + B2 8

 9 Read B2
 10 B2 :=

B2 + 1000
 11 Write

B2

“sees” wrong sum

5

Issues with Parallel Programming

6

�  Normally threads have to collaborate
�  Involves sharing of data in memory or on secondary

storage
� Write access to shared data cannot happen in an uncontrolled

fashion
� Otherwise allows programs to see inconsistent data values

� Processors can not modify independent memory locations
atomically
� Hence, must be synchronized

Synchronization: Locks

7

�  Traditional solution to data synchronization contention:
Employing software locks

�  All read and write access to shared data using locks
�  Never see inconsistent state
�  Can simulate atomic update of two different variables

Multiple Shared Data Objects

8

�  Multiple data objects shared by programs
�  Use a single program-wide lock

� Hurts the system performance

�  Multiple locks are required
� A lock for each shared location
�  Fine grain locking

Multiple Shared Data Objects cont’d

9

�  Threads accesses multiple shared objects
�  Each thread needing access to a shared object

�  obtains the corresponding lock;
�  accesses the shared object and
�  releases the lock

�  Can still result in incorrect state

Bank Transfer Example: Incorrect
Locking
 T1 Time T2

 1 Lock B1
 2 Read B1
 3 B1 := B1

– 1000
 4 Write B1

sum := 0 5 Release B1
Lock B1, B2 6
Read B1 7
Read B2 8
Release B1, B2 9
sum := sum + B1 10
sum := sum + B2 11 Lock B2

 12 Read B2
 13 B2 := B2

+ 1000
 14 Write B2
 15 Release

B2

Again “sees” wrong sum

10

Correct Locking: Two Phase Locking

11

�  Each thread accessing shared data object
�  Locks all the shared object required first
� Accesses the shared objects
� Then releases all the locks

�  Commonly referred to as two phase locking

Difficulties with Two Phase locking

12

�  Two phase locking involves ‘lock and wait’
�  Can potentially lead to deadlocks

� Wrong lock order

�  Bank transfer example
� T1.lock(b1) T2.lock(b2)
� Threads are deadlocked

�  Thus, obtaining locks as & when reqd will not work
� Can still result in deadlocks

Addressing deadlocks

13

�  Many solutions for deadlocks have been proposed in the
literature
� Deadlock prevention, deadlock avoidance, requesting resources

in a non-circular manner etc.
� Normally provided by Operating Systems

�  Programmer’s perspective
� To incorporate one of the above solutions in her programs
�  Increases the complexity of programming

Software Composition

14

�  Lock based software components are difficult to compose
�  Composition: build larger software systems using simpler

software components
� Basis of modular programming

�  “Perhaps the most fundamental objection [...] is that lock-
based programs do not compose: correct fragments may fail when
combined.” Tim Harris et al., "Composable Memory
Transactions", Section 2: Background, pg.2

Software Composition: Difficulties with
locks

15

�  Consider a hash table with thread-safe ‘insert’ and ‘delete
operations’ implemented using locks
�  Implementation of ‘insert and ‘delete’ are hidden

�  User wishes to transfer an item A from hash table 1 to hash
table 2

�  Transfer implementation: <delete (t1, A); insert(t2, A)>
� How to make the implementation of‘Transfer’ atomic ?

Programmer’s dilemma

16

�  The programmer is caught between two problems:
�  Increasing the part of the program that can be executed in

parallel
�  Increasing the complexity of the program code and therefore

the potential for problems

Alternative to locks: Software
Transactional Memory

17

�  A promising alternative which has garnered lot of interest
� Both in Industry and Academia

�  Software transactions: units of execution in memory which
enable concurrent threads to execute seamlessly
� Hide the difficulties of programming with locks

�  Paradigm originates from transactions in databases

Software Transactions

18

�  A transaction is a unit of code in execution in memory
�  A software transactional memory system (STM) ensures that

a transaction either
�  executes atomically even in presence of other concurrent

transactions or
�  never have executed at all

�  On successful completion, a transaction commits. Otherwise it
aborts

Programming Support: Bank Transfer
Example

19

t1()

 {

 initialization();

 atomic

 {

 Read B1

 B1 := B1 – 1000

 Write B1

 Read B2

 B2 := B2 + 1000

 Write B2

 }

}

Programming Support Cont’d

20

t2()
{

 initialization();
 atomic
 {
 Read B1;
 Read B2;

 sum := sum + B1;
 sum := sum + B2;
 }

}

STMs Implementation

21

�  The operations of a transaction are divided into three phases
�  Phase 1: Local read/write phase

�  Execute transaction with writes into private buffer
�  Phase 2: Validation phase

� Tests whether the reads and writes form a consistent view of
the memory

� Tests for conflicts
�  Phase 3: Commit or Abort phase

� Depending on validation phase, the transaction is aborted or
committed

�  If committed, the local writes are performed onto the memory

Optimistic Synchronisation

22

Memory

T1

Local Log Clean

T2

Validate Validate

Local Log Written

Requirements of Validation Phase

23

�  Ensures that a transaction commits only if it does not violates
consistency requirements

�  In the bank transfer example considering threads as
transactions
� A STM system that commits both the transactions is not

semantically correct

�  Hence, precise correctness criteria for STMs must be
identified

Intuitive Requirements of STM Systems

24

�  Observed by Guerraoui & Kapalka [PPoPP, 2008]
�  R1: A STM system must preserve real-time order

� Ti commits before Tj starts è effects of Ti must be seen before
Tj

�  violating real-time order may be misleading for programmers
who are used to critical sections that enforces this order
naturally

�  R2: Live transactions should not affect any other transaction
� A simple solution: Transactions execute normally. If a

transaction accesses inconsistent state, abort it
�  Seems to work well in Databases

Intuitive Requirements Cont’d

25

�  R2: Live transactions should not affect any other transaction
� Apparently, the databases execute in controlled environment
� Transactions accessing inconsistent states can cause problems;

but they are aborted later; hence no affect
� Consider, the following example: Initially, x=4, y=6
� T1: z = 1/(y-x); commit; à r1(x) r1(y) c1
� T2: x=2; y=4; commit; à w2(x) w2(y) c2;
� Consider an interleaving
�  r1(x, 4) w2(x,2) w2(y, 4) c2 r1(y, 4)
�  z = 1/(4 – 4) à divide-by-zero error. Can cause program to

crash

Intuitive Requirements Cont’d

26

�  Reading inconsistent values can cause many kinds of errors
� Divide-by-zero, infinite-loops, even I/O possibly

�  Thus, before the system can abort a transaction that read
inconsistent value
�  can cause the system to crash or
�  get into an infinite loop

�  Thus, even before the inconsistent read could be detected,
the damage could have already been done

�  May not be acceptable for Memory Transactions

Translation into Definition – Simple
Case

27

�  What do these intuitive requirements imply?
�  Consider the simple case

�  Execution consists only of read, write and tryC operations
� All these operations are atomic

�  Every transaction reads correct value à transactions read
only from committed values

�  An example history:
� H1: r1(x, 0) w2(y, 5) w2(x, 10) r1(y, 0) c1 c2

Some Notations

28

�  Every history has an initial committed transaction T0 that
initializes all the values

�  A history is said to be sequential (or serial) if all the
transactions in it ordered by real-time

�  lastWrite of a read operation r(x, v) in a history H,
�  is defined as the previous closest commit operation
�  that writes to x

�  For instance, consider the earlier history H1: r1(x, 0) w2(y, 5)
w2(x, 10) r1(y, 0) c1 c2
�  lastWrite of r1(x, 0): C0; lastWrite of r1(y, 0): C0

Notations continued

29

�  Legality: a history S is said to be legal
�  if every read operation r(x,v) reads the value written by

previous closest committed transaction that writes to x

�  For instance:
� H2: w1(x, 5) c1 w2(x, 10) c2 r3(x, 5) is not legal
� H3: w1(x, 5) c1 w2(x, 10) c2 r3(x, 10) is legal

Definition of Correctness Criterion-
Opacity

30

�  The correctness criterion is called Opacity
�  Consider a history H (with the restrictions as mentioned

earlier)
�  H is opaque if there exists a sequential (or serial) history S

such that :
� The operations of H & S are the same – (H & S are said to be

equivalent)
�  S respects the real-time order of H
�  S is legal

�  This definition ignores all the write steps of aborted transactions
in H

Comparison of Opacity with
Serializability

31

�  Consider some examples
�  H4: r1(x, 0) w1(y, 5) w2(x, 10) c1 r2(y, 5) a2

�  Serializable: T2
�  But NOT Opaque

�  H5: r1(x, 0) w1(y, 5) w2(x, 10) c1 r2(y, A)
� Opaque: T1 T2

�  Serializability ignores aborted transactions. Opacity considers
aborted transactions as well

�  Thus, it can be seen that opacity is costlier to implement

Opacity is analogous to Strict-MVSR

32

�  Variants of Serializability
� View Serializability (VSR): maintains only a single-version
� Multiversion View Serializability (MVSR): maintains multiple

versions

�  H6: r1(x, 0) w1(y, 5) w2(x, 10) c1 r2(y, 0) c1
�  Is in MVSR but not in VSR: T1 T2
� MVSR allows more concurrency by storing multiple versions

�  Strict MVSR: MVSR + real-time order
�  Opacity: Strict MVSR + correctness of aborted transactions

Deferred write vs Direct Write
Semantics

33

�  Direct Write semantics: Transactions can read uncommitted
values

�  Deferred Write semantics: Transactions only read from
committed values

�  H7: w1(x, 5) w2(y, 10) r1(x, 5) r2(y, 10) c2 c1
�  Serializable, not Opaque: T1 T2

Verifying membership of Opacity

34

�  Verifying membership of VSR is NP-Complete
�  Papadamitriou [JACM, 1979], Vidyasankar [AINF, 1987] showed

this

�  Verifying membership of Opacity?
� Not clear if it is NP-Complete, but commonly believed to be
� Difference is due to direct & deferred write semantics

�  Membership verification is important
� Can be used in developing efficient implementations
� Also used in verifying correctness of implementations

Conflict Serializability (CSR)

35

�  Conflict Order: in a history, order can be defined based on w-w,
w-r, r-w operations on the same data-item

�  Using this order, CSR can be defined
�  A history H is in CSR if there exists a sequential history S with the

same set of conflicts
�  Interestingly, membership of CSR can be verified in polynomial

time using Conflict Graph (V, E)
�  V: a vertex for each transaction
�  E: based on conflict order
�  H is in CSR iff the conflict graph is acyclic

�  Similarly, Conflict Opacity can be defined which can be verified
efficiently

Opacity Definition– Some relaxations

36

�  Read and Write operations are no longer atomic
� These operations can overlap

�  Operations: invocation followed by response
�  r(x) … ret(5)/ ret(A)
� w(x, 5) …. ret(ok)
�  tryc() …. ret(ok)/ ret(A)

�  Histories
� H8: r1(x) r2(x) ret(r1(x), 0) ret(r2(x), 0) w3(y, 5) ret(w3(y, 5),

ok) tryc3() r1(y) r2(y) ret(r1(y), 5) ret(r2(y), 0) ret3(ok)

Opacity Generalization

37

�  H is opaque if there exists a sequential (or serial) history S
such that :
� The operations of H & S are the same – (H & S are said to be

equivalent)
�  S respects the real-time order of H
�  S is legal

�  H8: r1(x) r2(x) ret(r1(x), 0) ret(r2(x), 0) w3(y, 5) ret(w3(y,
5), ok) tryc3() r1(y) r2(y) ret(r1(y), 5) ret(r2(y), 0)
ret(tryc3, ok)
� Opaque: T2 T3 T1

Opacity Generalization

38

�  H is opaque if there exists a sequential (or serial) history S
such that :
� The operations of H & S are the same – (H & S are said to be

equivalent)
�  S respects the real-time order of H
�  S is legal

�  H8: r1(x) r2(x) ret(r1(x), 0) ret(r2(x), 0) w3(y, 5) ret(w3(y,
5), ok) tryc3() r1(y) r2(y) ret(r1(y), 5) ret(r2(y), 0)
ret(tryc3, ok)
� Opaque: T2 T3 T1

Efficient Sub-Class of Opacity?

39

�  With the generalization, it is more commonly believed that
verifying opacity is NP-Complete

�  Can a sub-class be defined whose membership can be
efficiently verified?

�  The earlier described notion of conflicts is no longer valid
� Operations no longer atomic
� Can new conflict notion be defined that gives efficient sub-class

Other Considerations

40

�  Opacity is prefix-closed, whereas VSR/MVSR is not!
�  Presence of a final reading transaction

�  Drawback of Opacity: interference
�  Other correctness criteria: Virtual Worlds Consistency, DU-

Opacity
�  Nesting of Transactions: Precise correctness guarantees
�  Object based STMs: Lower level conflicts do not matter.

Only upper level conflicts matter.
�  How is nesting different from object based STMs?

Conclusion

41

�  Software Transactional Memory is a very promising research
alternative for programming multi-core CPUs
� Does not suffer the disadvantages of programming with locks
�  Saw the motivation

� Understood the intuitive requirements of STM systems

Questions?

42

