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Performance limits of single processors 
�  Software systems performance increase in last few decades 

�  Increase in CPU clock frequencies 

�  Limits in the increase of clock frequencies of CPUs in the last 
few years 

�  Obtain higher performance:  
�  Packing more processors into a single chip 
�  They are called multi-core CPUs 
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Parallel Processing Applications 
�  To achieve better performance with multi-core CPUs 

�  Applications programmed to take advantage of the underlying parallelism 

�  Commonly achieved by employing multi-threading 
�  Multiple threads of control execute concurrently 
�  Multi-threading can efficiently utilize the multi-core CPUs 
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Bank Transfer Example: Difficulty with 
parallel programming 
           T1   Time    T2 
 

        1    Read B1 
        2    B1 := 

B1 – 1000 
        3    Write 

B1 
sum := 0      4 
Read B1      5 
Read B2      6    
sum := sum + B1     7   
sum := sum + B2     8     

        9    Read B2 
        10    B2 := 

B2 + 1000 
        11    Write 

B2 

“sees” wrong sum 
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Issues with Parallel Programming 

6 

�  Normally threads have to collaborate 
�  Involves sharing of data in memory or on secondary 

storage 
� Write access to shared data cannot happen in an uncontrolled 

fashion 
� Otherwise allows programs to see inconsistent data values 

� Processors can not modify independent memory locations 
atomically 
� Hence, must be synchronized 



Synchronization: Locks 
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�  Traditional solution to data synchronization contention: 
Employing software locks 

�  All read and write access to shared data using locks 
�  Never see inconsistent state 
�  Can simulate atomic update of two different variables 



Multiple Shared Data Objects 
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�  Multiple data objects shared by programs 
�  Use a single program-wide lock 

� Hurts the system performance 

�  Multiple locks are required 
� A lock for each shared location 
�  Fine grain locking 



Multiple Shared Data Objects cont’d 
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�  Threads accesses multiple shared objects 
�  Each thread needing access to a shared object 

�  obtains the corresponding lock; 
�  accesses the shared object and 
�  releases the lock 

�  Can still result in incorrect state 



Bank Transfer Example: Incorrect 
Locking 
           T1    Time    T2 

           1    Lock B1 
           2    Read B1 
           3    B1 := B1 

– 1000 
           4    Write B1 

sum := 0       5    Release B1 
Lock B1, B2      6 
Read B1       7 
Read B2       8 
Release B1, B2      9 
sum := sum + B1         10   
sum := sum + B2      11    Lock B2 

           12    Read B2 
           13    B2 := B2 

+ 1000 
           14    Write B2 
           15    Release 

B2 

Again “sees” wrong sum 
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Correct Locking: Two Phase Locking 
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�  Each thread accessing shared data object 
�  Locks all the shared object required first 
� Accesses the shared objects 
� Then releases all the locks 

�  Commonly referred to as two phase locking 



Difficulties with Two Phase locking 
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�  Two phase locking involves ‘lock and wait’ 
�  Can potentially lead to deadlocks 

� Wrong lock order 

�  Bank transfer example 
� T1.lock(b1) T2.lock(b2)  
� Threads are deadlocked 

�  Thus, obtaining locks as & when reqd will not work 
� Can still result in deadlocks 



Addressing deadlocks 
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�  Many solutions for deadlocks have been proposed in the 
literature 
� Deadlock prevention, deadlock avoidance, requesting resources 

in a non-circular manner etc. 
� Normally provided by Operating Systems 

�  Programmer’s perspective 
� To incorporate one of the above solutions in her programs 
�  Increases the complexity of programming 



Software Composition 
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�  Lock based software components are difficult to compose 
�  Composition: build larger software systems using simpler 

software components 
� Basis of modular programming 

�  “Perhaps the most fundamental objection [...] is that lock-
based programs do not compose: correct fragments may fail when 
combined.” Tim Harris et al., "Composable Memory 
Transactions", Section 2: Background, pg.2 



Software Composition: Difficulties with 
locks 
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�  Consider a hash table with thread-safe ‘insert’ and ‘delete 
operations’ implemented using locks 
�  Implementation of ‘insert and ‘delete’ are hidden 

�  User wishes to transfer an item A from hash table 1 to hash 
table 2 

�  Transfer implementation: <delete (t1, A); insert(t2, A)> 
� How to make the implementation of‘Transfer’ atomic ?  



Programmer’s dilemma 
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�  The programmer is caught between two problems: 
�  Increasing the part of the program that can be executed in 

parallel 
�  Increasing the complexity of the program code and therefore 

the potential for problems 

 



Alternative to locks: Software 
Transactional Memory 
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�  A promising alternative which has garnered lot of interest 
� Both in Industry and Academia 

�  Software transactions: units of execution in memory which 
enable concurrent threads to execute seamlessly 
� Hide the difficulties of programming with locks 

�  Paradigm originates from transactions in databases 
 



Software Transactions 
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�  A transaction is a unit of code in execution in memory 
�  A software transactional memory system (STM) ensures that 

a transaction either  
�  executes atomically even in presence of other concurrent 

transactions or 
�  never have executed at all 

�  On successful completion, a transaction commits. Otherwise it 
aborts 

 



Programming Support: Bank Transfer 
Example 
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t1() 

 { 

 initialization();   

 atomic  

 {   

  Read B1 

  B1 := B1 – 1000 

  Write B1 

 

  Read B2 

  B2 := B2 + 1000 

  Write B2    

 } 

} 
 



Programming Support Cont’d 
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t2()  
{ 

 initialization();   
 atomic 
 { 
  Read B1; 
  Read B2; 

 
  sum := sum + B1; 
  sum := sum + B2; 
 } 

} 



STMs Implementation 
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�  The operations of a transaction are divided into three phases 
�  Phase 1: Local read/write phase 

�  Execute transaction with writes into private buffer 
�  Phase 2: Validation phase 

� Tests whether the reads and writes form a consistent view of 
the memory 

� Tests for conflicts 
�  Phase 3: Commit or Abort phase 

� Depending on validation phase, the transaction is aborted or 
committed 

�  If committed, the local writes are performed onto the memory 



Optimistic Synchronisation  
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Memory 

T1 

Local Log Clean 

T2 

Validate Validate 

Local Log Written 



Requirements of Validation Phase 
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�  Ensures that a transaction commits only if it does not violates 
consistency requirements 

�  In the bank transfer example considering threads as 
transactions 
� A STM system that commits both the transactions is not 

semantically correct 

�  Hence, precise correctness criteria for STMs must be 
identified 



Intuitive Requirements of STM Systems 
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�  Observed by Guerraoui & Kapalka [PPoPP, 2008] 
�  R1: A STM system must preserve real-time order 

� Ti commits before Tj starts è effects of  Ti must be seen before 
Tj 

�   violating real-time order may be misleading for programmers 
who are used to critical sections that enforces this order 
naturally 

�  R2: Live transactions should not affect any other transaction 
� A simple solution: Transactions execute normally. If a 

transaction accesses inconsistent state, abort it 
�  Seems to work well in Databases 



Intuitive Requirements Cont’d 
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�  R2: Live transactions should not affect any other transaction 
� Apparently, the databases execute in controlled environment 
� Transactions accessing inconsistent states can cause problems; 

but they are aborted later; hence no affect 
� Consider, the following example: Initially, x=4, y=6 
� T1: z = 1/(y-x); commit; à r1(x) r1(y) c1 
� T2:  x=2; y=4; commit; à w2(x) w2(y) c2; 
� Consider an interleaving 
�   r1(x, 4) w2(x,2) w2(y, 4) c2 r1(y, 4) 
�  z = 1/(4 – 4) à divide-by-zero error. Can cause program to 

crash 



Intuitive Requirements Cont’d 
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�  Reading inconsistent values can cause many kinds of errors 
� Divide-by-zero, infinite-loops, even I/O possibly 

�  Thus, before the system can abort a transaction that read 
inconsistent value 
�  can cause the system to crash or  
�  get into an infinite loop 

�  Thus, even before the inconsistent read could be detected, 
the damage could have already been done 

�  May not be acceptable for Memory Transactions 



Translation into Definition – Simple 
Case 
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�  What do these intuitive requirements imply? 
�  Consider the simple case  

�  Execution consists only of read, write and tryC operations  
� All these operations are atomic 

�  Every transaction reads correct value à transactions read 
only from committed values 

�  An example history:  
� H1: r1(x, 0) w2(y, 5) w2(x, 10) r1(y, 0) c1 c2  



Some Notations 
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�  Every history has an initial committed transaction T0 that 
initializes all the values 

�  A history is said to be sequential (or serial) if all the 
transactions in it ordered by real-time 

�  lastWrite of a read operation r(x, v) in a history H,  
�  is defined as the previous closest commit operation 
�  that writes to x 

�  For instance, consider the earlier history H1: r1(x, 0) w2(y, 5) 
w2(x, 10) r1(y, 0) c1 c2 
�  lastWrite of r1(x, 0): C0; lastWrite of r1(y, 0): C0  



Notations continued 

29 

�  Legality: a history S is said to be legal 
�  if every read operation r(x,v) reads the value written by 

previous closest committed transaction that writes to x 

�  For instance: 
� H2: w1(x, 5) c1 w2(x, 10) c2 r3(x, 5) is not legal 
� H3: w1(x, 5) c1 w2(x, 10) c2 r3(x, 10) is legal 



Definition of Correctness Criterion- 
Opacity 
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�  The correctness criterion is called Opacity 
�  Consider a history H (with the restrictions as mentioned 

earlier) 
�  H is opaque if there exists a sequential (or serial) history S 

such that : 
� The operations of H & S are the same – (H & S are said to be 

equivalent) 
�  S respects the real-time order of H 
�  S is legal 

�  This definition ignores all the write steps of aborted transactions 
in H 



Comparison of Opacity with 
Serializability 
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�  Consider some examples 
�  H4: r1(x, 0) w1(y, 5) w2(x, 10) c1 r2(y, 5) a2 

�  Serializable: T2 
�  But NOT Opaque 

�  H5: r1(x, 0) w1(y, 5) w2(x, 10) c1 r2(y, A) 
� Opaque: T1 T2 

�  Serializability ignores aborted transactions. Opacity considers 
aborted transactions as well 

�  Thus, it can be seen that opacity is costlier to implement 



Opacity is analogous to Strict-MVSR 
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�  Variants of Serializability 
� View Serializability (VSR): maintains only a single-version 
� Multiversion View Serializability (MVSR): maintains multiple 

versions 

�  H6: r1(x, 0) w1(y, 5) w2(x, 10) c1 r2(y, 0) c1 
�  Is in MVSR but not in VSR: T1 T2 
� MVSR allows more concurrency by storing multiple versions 

�  Strict MVSR: MVSR + real-time order 
�  Opacity: Strict MVSR + correctness of aborted transactions 



Deferred write vs Direct Write 
Semantics 
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�  Direct Write semantics: Transactions can read uncommitted 
values 

�  Deferred Write semantics: Transactions only read from 
committed values 

�  H7: w1(x, 5) w2(y, 10) r1(x, 5) r2(y, 10) c2 c1 
�  Serializable, not Opaque: T1 T2 



Verifying membership of Opacity 
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�  Verifying membership of VSR is NP-Complete 
�  Papadamitriou [JACM, 1979], Vidyasankar [AINF, 1987] showed 

this 

�  Verifying membership of Opacity?  
� Not clear if it is NP-Complete, but commonly believed to be 
� Difference is due to direct & deferred write semantics 

�  Membership verification is important 
� Can be used in developing efficient implementations 
� Also used in verifying correctness of implementations 



Conflict Serializability (CSR) 
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�  Conflict Order: in a history, order can be defined based on w-w, 
w-r, r-w operations on the same data-item 

�  Using this order, CSR can be defined 
�  A history H is in CSR if there exists a sequential history S with the 

same set of conflicts 
�  Interestingly, membership of CSR can be verified in polynomial 

time using Conflict Graph (V, E) 
�  V: a vertex for each transaction 
�  E: based on conflict order 
�  H is in CSR iff the conflict graph is acyclic 

�  Similarly, Conflict Opacity can be defined which can be verified 
efficiently 



Opacity Definition– Some relaxations 
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�  Read and Write operations are no  longer atomic 
� These operations can overlap 

�  Operations: invocation followed by response 
�  r(x) … ret(5)/ ret(A) 
� w(x, 5) …. ret(ok) 
�  tryc() …. ret(ok)/ ret(A) 

�  Histories 
� H8: r1(x) r2(x) ret(r1(x), 0) ret(r2(x), 0) w3(y, 5) ret(w3(y, 5), 

ok) tryc3() r1(y) r2(y) ret(r1(y), 5) ret(r2(y), 0) ret3(ok) 



Opacity Generalization 

37 

�  H is opaque if there exists a sequential (or serial) history S 
such that : 
� The operations of H & S are the same – (H & S are said to be 

equivalent) 
�  S respects the real-time order of H 
�  S is legal 

�  H8: r1(x) r2(x) ret(r1(x), 0) ret(r2(x), 0) w3(y, 5) ret(w3(y, 
5), ok) tryc3() r1(y) r2(y) ret(r1(y), 5) ret(r2(y), 0) 
ret(tryc3, ok) 
� Opaque: T2 T3 T1 

 



Opacity Generalization 
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�  H is opaque if there exists a sequential (or serial) history S 
such that : 
� The operations of H & S are the same – (H & S are said to be 

equivalent) 
�  S respects the real-time order of H 
�  S is legal 

�  H8: r1(x) r2(x) ret(r1(x), 0) ret(r2(x), 0) w3(y, 5) ret(w3(y, 
5), ok) tryc3() r1(y) r2(y) ret(r1(y), 5) ret(r2(y), 0) 
ret(tryc3, ok) 
� Opaque: T2 T3 T1 

 



Efficient Sub-Class of Opacity? 
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�  With the generalization, it is more commonly believed that 
verifying opacity is NP-Complete 

�  Can a sub-class be defined whose membership can be 
efficiently verified? 

�  The earlier described notion of conflicts is no longer valid 
� Operations no longer atomic 
� Can new conflict notion be defined that gives efficient sub-class 



Other Considerations 
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�  Opacity is prefix-closed, whereas VSR/MVSR is not! 
�  Presence of a final reading transaction 

�  Drawback of Opacity: interference 
�  Other correctness criteria: Virtual Worlds Consistency, DU-

Opacity 
�  Nesting of Transactions: Precise correctness guarantees 
�  Object based STMs: Lower level conflicts do not matter. 

Only upper level conflicts matter.  
�  How is nesting different from object based STMs? 



Conclusion 
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�  Software Transactional Memory is a very promising research 
alternative for programming multi-core CPUs 
� Does not suffer the disadvantages of programming with locks 
�  Saw the motivation 

� Understood the intuitive requirements of STM systems 

 



Questions? 
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