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Skolem Problem Variants Applications Results

The Fibonacci Sequence

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .

Fibonacci sequence: un = un−1 + un−2 where u1 = u0 = 1

But rabbits die!

Consider un = un−1 + un−2 − un−3 where u2 = 2, u1 = u0 = 1

The Question: Can they ever die out?
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Linear Recurrence Sequences (LRS)

Definition

A sequence 〈u0, u1, . . .〉 of numbers is called an LRS if there exists
k ∈ N and constants a0, . . . , ak−1 s.t., for all n ≥ k ,

un = ak−1un−1 + . . . + a1un−k+1 + a0un−k

k is called the order/depth of the sequence.

The first k elements u0, . . . , uk−1 are called initial conditions
and they determine the whole sequence.

We can define the sequences and constants to be over
integers or rationals or reals.

3



Skolem Problem Variants Applications Results

The Skolem Problem

Figure: Thoralf Skolem

The Skolem Problem (also called the Skolem-Pisot Problem)

Given a linear recurrence sequence (with initial conditions) over
integers, does it have a zero?

i.e., does ∃n such that un = 0?

i.e., do the rabbits ever die out?
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The Skolem Problem

Skolem Problem: Does ∃n such that un = 0?

Surprisingly, this problem has been open for 80 years!

Well, in 1934 decidability wasn’t as relevant...

“It is faintly outrageous that this problem is still open; it is saying
that we do not know how to decide the halting problem even for
’linear’ automata!” – Terence Tao, Famous blog entry 2007

“...a mathematical embarrassment...” – Richard Lipton, Chap. 42,
The P=NP question and Gödel’s lost letter, Springer, 2010.
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Outline

Alternative formulations and variants

Applications
1 Program Termination
2 Probabilistic verification

Results
1 Classical results on Skolem
2 Relation between the problems
3 Results on Program termination
4 Recentmost Results
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Equivalent formulations of the Skolem Problem

Linear recurrence sequence form

Given an LRS 〈u1, u2, . . .〉 (with initial conditions), does ∃n s.t.,
un = 0?

Matrix Form

Given a k × k matrix M, does ∃n s.t., Mn(1, k) = 0?

Dot Product Form

Given a k × k matrix M, k-dim vectors ~v , ~w , does ∃n s.t.,
~v ·Mn · ~wT = 0?
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Equivalent formulations

(1) =⇒ (2) Let un = ak−1un−1 + . . . + a0un−k , a′ = (ak−1 . . . a1).

Let

M1 =

(
~a′ Idk−1
a0 0

)
Then ∀n ≥ 0, un = ~v ·Mn

1 · ~wT , where ~v = ~u, ~w = (0 . . . 0 1).

Define

M =

(
0 ~v ·M1

~0T M1

)
Mn =

(
0 ~v ·Mn

1
~0T Mn

1

)
Then, Mn(1, k + 1) = (1 0) · (Mn) · (0 ~w)T = un.

(3) =⇒ (1) follows from taking the characteristic polynomial and
using Cayley Hamilton Theorem.
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Variants

Skolem Problem

Given an LRS 〈u1, u2, . . .〉, does ∃n s.t., un = 0?

Given k × k matrix M, k-dim vectors ~v , ~w , does ∃n s.t.,
~v ·Mn · ~wT = 0?

Positivity Problem

Given an LRS 〈u1, u2, . . .〉, ∀n, is un ≥ 0?

Ultimate Positivity: ∀n, n ≥ T , is un ≥ 0?

Orbit Problem

Given a k × k matrix M, k-dim vectors ~x and ~y , does ∃n s.t.,
~x ·Mn = ~y?

Higher Order Orbit Problem: Given k × k matrix M, k-dim
vector ~x , a subspace V of dim ≤ k, does ∃n s.t., ~x ·Mn ∈ V ?
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Applications of these and other variants!

Software verification

Termination of linear programs

Probabilistic model checking

Reachability in Markov chains

Theoretical Biology

Analysis of L-systems, Population dynamics

Economics

Stability of supply-demand equilibria in cyclical markets

Quantum Computing

Threshold problems for quantum automata

Dynamical systems

Reachability and invariance problems

Combinatorics

Term rewriting

. . .
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Program Termination

Basic undecidability result – Turing 1936

Termination of a generic program with a loop:

while (conditions) {commands}

is undecidable.

But now, let us consider a much simpler case:

A simple linear program

~x := ~b; while (~cT~x > ~0) {~x := A~x}
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Linear Programs

An initialized (homogenous) linear program

~x := ~b; while (~cT~x > ~0) {~x := A~x}

Termination problem for simple linear programs

Does an instance of the above program i.e., 〈~b;~c ;A〉, terminate?

This problem is equivalent to the positivity problem!

Theorem [Rohit Singh, Supratik Chakraborty]

Consider the following single input initialized linear loop program:

~x := ~b; while (B~x > ~e) {~x := A~x + ~d}

The termination problem for this program is equivalent to the
positivity problem.
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Reachability in Markov chains

Consider a Markov chain M over states s1, . . . , st .

Question

Starting from a given initial probability distribution ~v , is it the case
that eventually the probability of staying in state st will stay within
[0, 1/2]?

For e.g., the nodes above could be protein concentrations, and the
Markov chain a model of biochemical reactions and we want to
check for high conc.
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Reachability in Markov chains

Example: Consider ~v = (1/4, 1/4, 1/2) and

M =

0.6 0.1 0.3
0.3 0.6 0.1
0.1 0.3 0.6


Then, does ∃T s.t., for all t > T , ~v ·Mt · (1 0 0) > 1/3?

Then, does ∃t s.t., ~v ·Mt · (1 0 − 1) = 0?

Theorem

The Skolem over rationals can be reduced to (two!) Stochastic
version(s):

Given stochastic vector ~v , vector w , row-stochastic matrix M,
does ∃t s.t., ~v ·Mt ~w = 1/2

Given stochastic vectors ~v , ~w , row-stochastic matrix M,
rational r , does ∃t s.t., ~v ·Mt ~w = r
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Results
1 Classical results on Skolem

Skolem-Mahler-Lech Theorem
Decidability of Skolem/Positivity for 2,3,4...

2 Relation between the problems

3 Results on Program termination- Tiwari, Braverman, Supratik
et al.

4 Recentmost results - Ouaknine, Worrell, et al.

Orbit problem - extension of Kannan/Lipton
Positivity problem
Other/probabilistic results and reductions
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Classical Results on Skolem

The Skolem-Mahler-Lech Theorem (1934, 1935, 1953)

The set of zeros of any linear recurrence set is the union of a finite
set and a finite number of arithmetic progressions (periodic sets).

The Skolem asks if the set of zeros is empty.

However, Skolem’s result also shows that it is decidable to
check whether or not the set of zeros is infinite!

In other words, the hardness of the result is in characterizing
the finite set.

All known proofs of the above result use p-adic integers.
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Lower order results

Skolem’s problem

Order 1: Trivial (why?).

Order 2: Folklore!

Order 3,4: Proved by Vereshchagin in 1985 using results on
linear logarithms by Baker and van der Poorten.

This theory fetched Baker the Field’s medal in 1970!

In a TUCS Tech report (2005), Havala, Harju, Hirvensalo,
Karhumäki prove 2,3,4 in detail.

They also claim for order 5, but Ouaknine, Worrell (RP’12)
pointed out a serious flaw in it.

(Ultimate) Positivity problem

Order 2: Burke and Webb (1981) – Ultimate

Order 2: Halava, Harju and Hirvensalo (2006) – integer LRS

Order 3: Laohakosol and Tangsupphathawat (2009)
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Hardness results

Skolem is NP hard - Blondel and Portier (2002)

The (complement of) Skolem problem reduces to Positivity

LRS are closed under pointwise product and sum
given LRS un, un 6= 0 iff u2n − 1 ≥ 0.

Thus, Positivity is coNP hard.

Ultimate Positivity is also coNP hard.

18



Skolem Problem Variants Applications Results

Hardness results

Skolem is NP hard - Blondel and Portier (2002)

The (complement of) Skolem problem reduces to Positivity

LRS are closed under pointwise product and sum
given LRS un, un 6= 0 iff u2n − 1 ≥ 0.

Thus, Positivity is coNP hard.

Ultimate Positivity is also coNP hard.

18



Skolem Problem Variants Applications Results

Hardness results

Skolem is NP hard - Blondel and Portier (2002)

The (complement of) Skolem problem reduces to Positivity

LRS are closed under pointwise product and sum
given LRS un, un 6= 0 iff u2n − 1 ≥ 0.

Thus, Positivity is coNP hard.

Ultimate Positivity is also coNP hard.

18



Skolem Problem Variants Applications Results

Hardness results

Skolem is NP hard - Blondel and Portier (2002)

The (complement of) Skolem problem reduces to Positivity

LRS are closed under pointwise product and sum
given LRS un, un 6= 0 iff u2n − 1 ≥ 0.

Thus, Positivity is coNP hard.

Ultimate Positivity is also coNP hard.

18



Skolem Problem Variants Applications Results

The Orbit problem

Orbit Problem

Given a k × k matrix M, k-dim vectors ~x and ~y , does ∃n s.t.,
~x ·Mn = ~y?

Higher Order Orbit Problem: Given k × k matrix M, k-dim
vector ~x , a subspace V of dim ≤ k, does ∃n s.t., ~x ·Mn ∈ V ?

Skolem problem (does ∃n s.t., ~v ·Mn · ~wT = 0?) is special
case of the higher order Orbit Problem

Thus, Higher order Orbit Problem is also NP hard.
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The Orbit problem

Orbit Problem

Given a k × k matrix M, k-dim vectors ~x and ~y , does ∃n s.t.,
~x ·Mn = ~y?

Higher Order Orbit Problem: Given k × k matrix M, k-dim
vector ~x , a subspace V of dim ≤ k, does ∃n s.t., ~x ·Mn ∈ V ?

Kannan, Lipton – STOC’80, JACM’86

The Orbit problem is decidable in P. Higher order was left open.
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~x ·Mn = ~y?

Higher Order Orbit Problem: Given k × k matrix M, k-dim
vector ~x , a subspace V of dim ≤ k, does ∃n s.t., ~x ·Mn ∈ V ?

Kannan, Lipton – STOC’80, JACM’86

The Orbit problem is decidable in P. Higher order was left open.

Chonev,Ouaknine, Worrell– STOC’12

High dim Orbit Problem for dim 1 is in P

High dim Orbit Problem for dim 2 or 3 is in NPRP
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Termination of Linear Programs

Non-homogenous to Homogenous

~x := ~b; while (B~x > ~e) {~x := A~x + ~d}

By adding a new scalar variable z ,

~x := ~b, z = 1; while (B~x − ~ez > 0) {~x := A~x + ~dz ; z = z}

Thus, we only have to consider:

~x := ~b while (B~x > 0) {~x := A~x}

Tiwari CAV’04 : while (B~x > 0) {~x := A~x} termination is
decidable over reals
Braverman CAV’06: The above problem is decidable over
integers
Singh, Supratik: Reduction to Positivity, decidability for
subclass 20
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Recentmost Results

Ouaknine, Worrell – Announced on webpage

positivity for LRS of order 5 or less is decidable with

complexity coNPPPPPPP
.

ultimate positivity for LRS of order 5 or less is decidable in P.

decidability for order 6 would imply major breakthroughs in
analytic number theory (Diophantine approx of transcendental
numbers).
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ultimate positivity for LRS of order 5 or less is decidable in P.

decidability for order 6 would imply major breakthroughs in
analytic number theory (Diophantine approx of transcendental
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“All prior work on Positivity problems that we are aware of has
been confined to the use of linear algebra and elementary algebraic
number theoretic techniques. By contrast, we are deploying an
eclectic arsenal of deep and sophisticated tools from analytic and
algebraic number theory, Diophantine geometry, . . . ”
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Recentmost Results

Ouaknine, Worrell – Announced on webpage

positivity for LRS of order 5 or less is decidable with

complexity coNPPPPPPP
.

ultimate positivity for LRS of order 5 or less is decidable in P.

decidability for order 6 would imply major breakthroughs in
analytic number theory (Diophantine approx of transcendental
numbers).

Some high-level intuition:

1 check if un ultimately positive by looking at its “exponential
polynomial soln” in P.

2 if un is ult. pos. with ord < 5, we can compute N (of at most
exp magnitude) s.t., un is positive after N.
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