50 years of the Krohn-Rhodes theorem

Kamal Lodaya

50 years of IMSc

Awkward example

class K1 (ml:comm — comm) =

local int x; init x := 0;

method ml (c) =

(x := 1; ¢c; if x # 1 then diverge)
end K1

class K2 (m2:comm — comm) =

local int x; init x := 0;
method m2 (c) = (c)
end K2

Claim. K1, K2 have the same meaning.
How do we prove this?

More awkward example

class K1 (ml:comm — comm) =

local int x; init x := 0;

method ml (c) =

(x := 0; ¢c; x :=1; c; 1f x # 1 then diverge)
end K1

class K2 (m2:comm — comm)

local int x; init x := 0;
method m2(c) = (c;c)
end K2

Claim. K1, K2 have the same meaning.
How do we prove this?

More awkward example

class K1 (ml:comm — comm) =

local int x; init x := 0;

method ml (c) =

(x :=0; ¢; x := 1; ¢c; 1if x # 1 then diverge)
end K1

class K2 (m2:comm — comm)

local int x; init x := 0;
method m2(c) = (c;c)
end K2

Claim. K1, K2 have the same meaning.

How do we prove this?

Solved by using
operational methods, and by

using denotational methods.

Some dates

» Reddy and Dunphy in 2012 extend a semantics developed

by and
» They use the idea of parametric polymorphism developed
by , first used in this kind of

semantics by
» Parametricity uses logical relations developed in Plotkin’s
notes, 1973, based on ideas in

Some dates

» Reddy and Dunphy in 2012 extend a semantics developed

by and
» They use the idea of parametric polymorphism developed
by , first used in this kind of

semantics by

» Parametricity uses logical relations developed in Plotkin’s
notes, 1973, based on ideas in

» Bisimulation developed by Park around 1980 is a close
relative of logical relations

» An earlier idea was zigzag relations in van Benthem’s
thesis, 1974, 1983

» van Benthem’s definition is a relational generalization of
that of p-morphisms in Segerberg’s thesis, 1968, 1970

» One of the first ideas in this direction is that of weak
homomorphisms of automata

Some dates

» Reddy and Dunphy in 2012 extend a semantics developed

by and
» They use the idea of parametric polymorphism developed
by , first used in this kind of

semantics by

» Parametricity uses logical relations developed in Plotkin’s
notes, 1973, based on ideas in

» Bisimulation developed by Park around 1980 is a close
relative of logical relations

» An earlier idea was zigzag relations in van Benthem’s
thesis, 1974, 1983

» van Benthem’s definition is a relational generalization of
that of p-morphisms in Segerberg’s thesis, 1968, 1970

» One of the first ideas in this direction is that of weak
homomorphisms of automata

» The corresponding idea of division of monoids appears in
the theses of Krohn and of Rhodes, 1962

Some dates

» 1954-55 Edwin Moore and George Mealy (automata)

» 1956 Stephen Kleene (expressions)

» 1957-58 John Myhill and Anil Nerode (monoids)

» 1958 Michael Rabin and Dana Scott (automata)

» 1960-62 Richard Bichi (logic)

» 1962-65 Kenneth Krohn and John Rhodes (monoids)

» 1965 Marcel-Paul Schitzenberger (monoids)

» 1966 Robert McNaughton (logic)

» 1965-66 Stal Aanderaa and Arto Salomaa (expressions)
» 1966 Corrado B6hm and Giuseppe Jacopini (expressions)
» 1970 Charles Wells (categories)

Transition systems and monoids

v

(Q,6:QxA— Q)

Alternately § : A — Q@

Morphism 6* : (A*,.,e) = (Q9, o, Id)

5*(2) = Id, 5*(wx) = 6*(w)o*(x)

Subset construction: (Q,d C Q x A x Q), morphism
5 (A%) = (p(Q x Q), 0, Id)

v

v

v

Transition systems and monoids

v

(Q5:QxA— Q)

Alternately 6 : A — Q@

Morphism 6* : (A*,.,e) = (Q9, o, Id)

5*(e) = Id, 0% (wx) = 6*(w)d*(x)

Subset construction: (Q,d C Q x A x Q), morphism

5 (A%) = (p(Q x Q), 0, Id)

Right action (Q, .) of monoid A* acting on Q
g.1=4q,q9.(wx) =(q.w).x

Product construction: Given (P, .) and (Q, .), right action
on P x Qgivenby (p,q).a= (p.a,q.a)

Transition systems and monoids

v

(Q,0:QxA— Q)

Alternately 6 : A — Q@

Morphism 6* : (A*,.,e) = (Q9, o, Id)

5*(e) = Id, 0% (wx) = §*(w)d*(x)

Subset construction: (Q,d C Q x A x Q), morphism

5 (A%) = (p(Q x Q), 0, Id)

Right action (Q, .) of monoid A* acting on Q
g.1=4q,q9.(wx) =(q.w).x

Product construction: Given (P,.) and (Q,.), right action
on P x Qgivenby (p,q).a= (p.a,q.a)

L C A*is recognized by L = (6*)"({qo} x Q)
Generalizing, L recognized by morphism h from a finitely

generated monoid into monoid S if for some S; C S,
L=h"(S)

Mealy machines and transducers

» (Q,4,8:QxA— BY)

» Alternately 5 : A — (B*)?

» Morphism g* : (A*,.,e) = ((B*)9,0,2),
B*(e)(q) =&, B*(wx)(q) = 5" (w)(q)5"(x)(6*(W)(q))

» Right actions (Q, ., x), monoid A* acting on (B*)?
gx1=1,gx(wx)=(qg=w)((g.w) * x), realizing a
sequential function from A* to B*

» Alternately right action of monoid A* acting on (B*)9 x Q
(f,9)1 = (f,q), (f, 9).(wx) = (f(q)(W)f(q.w)(x), (q.W).x)

Composition of Mealy machines

» Let Mgc = (P, ., %) realize a sequential function from B* to
C* and Mug = (Q, ., *) realize a sequential function from
A* to B*

» Their composition from A* to C* is realized by (P x Q, ., *)
(p,q).a=(p.(g+a),q.a),(p,q)xa=px(qxa)

» Internalizing the intermediate alphabet we get a right
action (B*)@ x A* acting on the product P x Q using
(p,q).(f,a) = (p-f(q), 9.a)

» If Mgc, Mag are minimal automata, we can think of their
state sets P, Q as being equivalence classes labelled by
(B*)? and A* respectively, hence (B*)A" and A*

» More generally, given monoids S and T, we have to
consider for the composition ST x T

Wreath product of monoids

» Let (P, S) and (Q, T) be transformation monoids, more
generally S a monoid and T a right action on a set Q

» Define F = S? and let (tf)(q) = f(qt) for t € T be the right
action T on Q seen as a left actionby T on F

» Now we get a monoid F x T with a right action F x T (so
just a monoid, not necessarily a transformation monoid)
(f,1).(g.u) = (F.(tg). t.u)

» Associative, so F x T is a monoid under this operation

Wreath product of monoids

» Let (P, S) and (Q, T) be transformation monoids, more
generally S a monoid and T a right action on a set Q

» Define F = S? and let (tf)(q) = f(qt) for t € T be the right
action T on Q seen as a left actionby T on F

» Now we get a monoid F x T with a right action F x T (so
just a monoid, not necessarily a transformation monoid)
(f,1)-(g,u) = (f.(tg), t.u)

» Associative, so F x T is a monoid under this operation

» More generally such a submonoid of S™ x T is called the
wreath product monoid S T

> If S recognizes L and T recognizes K,
there is a sequential function (realized by a transducer) 7
such that S T recognizes 7—'(L) N K

» Example: Sequential composition K’; L

Covering of automata and division of monoids

» M =(Q,.)is covered by M' = (@, .), written M < M', if
there is a partial onto function f : @ — Q such that when
f(q').ais defined, it is equal to f(q'.a)

» M =(Q,.)is covered by M' = (@, .), written M < M', if
there is an onto relation r C Q' x Q such that
r(g').acr(q.a)

» Generalizing, monoid S divides monoid T, written S < T, if
S is the morphic image of a submonoid of T

Covering of automata and division of monoids

» M =(Q,.)is covered by M' = (@, .), written M < M', if
there is a partial onto function f : @ — Q such that when
f(q').ais defined, it is equal to f(q'.a)

» M =(Q,.)is covered by M' = (@, .), written M < M', if
there is an onto relation r C Q' x Q such that
r(g').acr(q.a)

» Generalizing, monoid S divides monoid T, written S < T, if
S is the morphic image of a submonoid of T

Theorem ()

1. Every finite group can be written as a composition series of
simple groups which are its factors.

2. This is unique upto permutation and isomorphism.

3. Every finite group divides a series of wreath products of
simple groups which divide it; thatis, G < Gy 1 Go 1 - -1 Gp,
where each G; is a simple group dividing G.

Decomposition

Theorem ()

The language of any finite automaton can be described by a
regular expression using letters, sequencing, choice and
iteration operations.

Theorem ()

Every finite monoid divides a series of wreath products of

simple groups and the groupfree monoid U2; that is,

S< G- 0G LU - QUi 0 0 Gig U2 2 Gy 0 Ut -2 Ui,
where each Gj; is a simple group dividing S and each Uy is a

copy of U2.

Theorem ()

Every flowchart program can be converted into an equivalent
program using only assignments, sequencing, choice
(if-then-else) and iteration (while-do) commands.

