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Verification of Concurrent Recursive Programs

her forthcom hD Thesis
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Concurrent Recursive Programs

<Variables range over finite domains>
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Concurrent Recursive Programs

<Variables range over finite domains>

< Functions can be recursive >
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Concurrent Recursive Programs

<Variables range over finite domains>

< Functions can be recursive >

Multi-threaded (shared state) or
Distributed Systems
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Recursive program = Pushdown system

a,c
a
func f1 b
{while <true>
{call f1 OR C
a OR
exit;} b

return; }
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Multi-threaded program = Multi-PDS

func f1 func £2 func £3
{while <true> {while <true> {while <true>
{call f1 OR {call £2 OR {call £3 OR
a OR a OR a OR
exit;} exit;} exit;}
return;} return;} return; }
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Process 1

Queue 4
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Queue 2

Process 2

Communicating FSMs

Queue 5

Queue 3

Queue 6

Process 3
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Communicating Recursive Processes

Process 1

Queue 1

Stack 1

Queue 2

Queue 5

Stack 2
4 )
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

Monday 29 July 13



The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

e MPDSs -- Restrictions on the stack access

® Bounded Context Qadeer&Rehof,
® Bouno ed Phase LaTorre&Madhusudan&Parlato
® Bounded Scope LaTorre&Napoli

o () rdered Stac kS Atig&Bollig&Habermehl
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

® CFMs
e Universally/Existentially bounded systems

Henrikson et al., Genest&Kuske&Muscholl

® Message Sequence Graphs (or HMSCs)

Madhusudan
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

® (CRPs

® Well-queueing Systems with context bounds,...
Heussner&Lerox,&Muscholl&Sutre, LaTorre&Madhusudan&Parlato
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Behaviours as Graphs

a,c

func f1
{while <true>
{call f£1 OR
a OR b

exit;} >
return;}

Nested word
= word + binary nesting relation
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Behaviours as Graphs

func f1 func £2 func f£3
{while <true> {while <true> {while <true>
{call f£1 OR {call f£f2 OR {call £3 OR

a OR a OR a OR
exit;} exit;} exit;} /???fé
return;} return;} return;}

7T — SN

O——C— —>0——> ——>0——>0—

Multiply Nested word (MNW)
= word + multiple nesting relations

a,c
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Behaviours as Graphs

send a OR | reca OR

send b OR > Dbjbja 1 recbOR

Skip Queue 1 Skip
Process 1 Process 2

0E—0—0<—0
00000

Message Sequence Charts
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Behaviours as Graphs

skip Queue 1 pop ¢ OR
skip

Process 1 Process 2

rec a OR
send a OR | rec b OR
send b OR > bibja T pushcOR \
| C

Stack 1

Message Sequence Charts with Nesting
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And other beasts ...
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Graphs and MSO

Our graphs are
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Graphs and MSO

Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation per linear order
Corresponding to the stacks (<)

® Message relations betweens processes
One per queue, assumed to be FIFO (<)
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Graphs and MSO

Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation oer linear order

S
Corresponding %Re\a‘\()f-\\b (<s)

® Message N\a\C\\..a betweens processes
One per queue, assumed to be FIFO (<)
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Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation per linear order
Corresponding to the stacks (<)

® Message relations betweens processes
One per queue, assumed to be FIFO (<)
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Graphs and MSO

Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation per linear order
Corresponding to the stacks (<)

® Message relations betweens processes
One per queue, assumed to be FIFO (<)

MSO has one binary relation symbol for each of these
relations.
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Graphs and MSO

Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation per linear order
Corresponding to the stacks (<)

® Message relations betweens processes
One per queue, assumed to be FIFO (<)

MSO has one binary relation symbol for each of these
relations.

Satisfiability is undecidable with 2 nesting relations /
2 processes connected by queues

|3
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Tree-width

Madhusudan/Parlato show that
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Tree-width

Madhusudan/Parlato show that

® Runs of the restricted systems have bounded tree-width

® For any system, its set of restricted runs is MSO definable.
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behaviors

7T — N
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Split behaviors

e SN




Split behaviors

ST SN,

Size of the split = number of components = 4
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behaviors

0000
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Split behaviors




Split behaviors

o0

Size of the split = number of components = 4




An algebra on Split behaviours

. . 7~ 7~ A 7 A
Basic splits: 6 o 6 o ¢

Operations:

merge (binary)
shuffle (unary)
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The merge Operation
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The merge Operation
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The merge Operation
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The merge Operation

e N
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The merge Operation

SN
.
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The merge Operation

SN
?

0E—0—0<—0




The Shuffle Operation

0—>0—>0—>0 (>0 o ©0 0—>0—>0—>0 (>0
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The Shuffle Operation

—>0—>0—>0 0>0 0 0 0—>0—>0—>0 (>0

0—>»0—>»0—>»0  0—>»0—>0—>»0 00 0o 0 0—>0 0
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The Shuffle Operation

0—>0—>0—>0 (>0 o ©0 0—>0—>0—>0 (>0
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The Shuffle Operation

—>0—>0—>0 0>0 0 0 0—>0—>0—>0 (>0

0—>0—>0—>0 (>0 O0—>0—>0—>0 (>0 0 0 0
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The Shuffle Operation

0—>0—>0—>0 (>0 o ©0 0—>0—>0—>0 (>0
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Shuffle Operation
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Shuffle Operation

0—>0—>0—>0 (0—>0 0 0—>»>0—>0—>0 (>0 0 0 O

Monday 29 July 13



Shuffle Operation

0—>0—>0—>0 (0—>0 0 0—>»>0—>0—>0 (>0 0 0 O

Invalid!
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Shuffle Operation
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Shuffle Operation




Shuffle Operation
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Shuffle Operation

>




Any behaviour can be generated by the algebra

Monday 29 July 13



Any behaviour can be generated by the algebra




Any behaviour can be generated by the algebra

% m
O- >0—>0— 00— 0—>0—>0—>0—>0—>0—>




Any behaviour can be generated by the algebra

N




Any behaviour can be generated by the algebra

?

0E—0—0<—0




Bounded split-width (k)

If a split-behaviour can be generated by the algebra,
with the size of all the splits used <k




Example: an MSCN
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Example: an MSCN

0E—0<—0 ©O
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Model-Checking w.r.t Split-width k

Given a concurrent recursive program

Given two concurrent recursive programs
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Model-Checking w.r.t Split-width k

Given a concurrent recursive program
® |s there an accepting run with split-width <= k?

® Does it accept all split-width <= k words?

Given two concurrent recursive programs

® Are the split-width k-behaviours of one contained in
those of the other?
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Model-Checking w.r.t Split-width k

Given a concurrent recursive program
® |s there an accepting run with split-width <= k?

® Does it accept all split-width <= k words?

Given two concurrent recursive programs

® Are the split-width k-behaviours of one contained in
those of the other?

Abstract Derivation Trees
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Split-width <=k Runs
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Split-width <=k Runs

ADTs representing split-width k derivation trees
form a regular tree language.

Easy tree automaton construction
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Split-width <=k Runs

ADTs representing split-width k derivation trees
form a regular tree language.

Easy tree automaton construction

ADTs representing derivation trees of split-width k
accepting runs of a CRP is a regular tree language.

Fasy tree automaton construction. Size of the
automaton is exponential in k.
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Decidability of Model-checking

Input

S : CRP over a given set of processes.
k : parameter (split-width)

Emptiness ExpTime

Universality 2-ExpTime

Inclusion 2-ExpTime
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Model-checking MSO formulas

Given a formula ¢ over MSCNs we construct a formula
over ADTs such that

The interpretation:
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Model-checking MSO formulas

Given a formula ¢ over MSCNs we construct a formula @
over ADTs such that

Forany MSCN'M, M= @ iff TE W for any ADTT
representing a split-width k derivation of M.

The interpretation:
® The domain is the set of leaves.
® Message, Nesting are checked examining “common” parent.

® Only process successor needs little bit of work
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Nested Words

Nested words have split-width < 3

S




Nested Words

Nested words have split-width < 3

A




Nested Words

Nested words have split-width < 3

e D




Nested Words

Nested words have split-width < 3
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Nested Words

Nested words have split-width < 3

O—>0——>0—0

NN




Nested Words

Nested words have split-width < 3

O—>0——>0—0

N

{Theorem. MSO is decidable over nested words (VPLs).

Monday 29 July 13



Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

T =N

—>—
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Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

7T — N

> —F — —) > >
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Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

O——>0O— —»>0—> ——> —>0—
> — — —) > >

Bounded Scope MNWs: Fix parameter m. For any nesting
edges, no more than m different contexts between its source
and target.

S. La Torre and M. Napoli. Reachability of multistack pushdown systems with
scope-bounded matching relations. In J.-P. Katoen and B. Konig, editors, CON-
CUR, volume 6901, pages 203-218. Springer, 2011.
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Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves

at most one stack.

O——>0O— —»>0—> ——> —>0—
> — — —) > >

Bounded Scope MNWs: Fix parameter m. For any nesting
edges, no more than m different contexts between its source
and target.

{Theorem. S-W at most m + 2.

S. La Torre and M. Napoli. Reachability of multistack pushdown systems with
scope-bounded matching relations. In J.-P. Katoen and B. Konig, editors, CON-
CUR, volume 6901, pages 203-218. Springer, 2011.
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Bounded phase multi-pushdown systems

A phase is a set of consecutive positions which involves at
most one stack.
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Bounded phase multi-pushdown systems

A phase is a set of consecutive positions which involves at
most one stack.

TS
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Bounded phase multi-pushdown systems

A phase is a set of consecutive positions which involves at
most one stack.

Bounded Phase MNWs: Fix parameter p. At most p phases.

S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS, pages 161-170. IEEE Computer Society, 2007.
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Bounded phase multi-pushdown systems

A phase is a set of consecutive positions which involves at
most one stack.

Bounded Phase MNWs: Fix parameter p. At most p phases.

LTheorem. S-W at most 2P .

S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS, pages 161-170. IEEE Computer Society, 2007.
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Ordered multi-pushdown systems

=

—>0——> ——>O——>0—

Ordered MNWs: Priority among the stacks. Returns agree
with the priority. When a stack pops, all higher priority stacks
are empty.

M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is
2ETIME-Complete. In M. Ito and M. Toyama, editors, Developments in Language
Theory, volume 5257, pages 121-133. Springer, 2008.

L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-pushdown
languages and grammars. Int. J. Found. Comput. Sci., 7(3):253-292, 1996.
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Ordered multi-pushdown systems

=

—>0——> ——>O——>0—

Ordered MNWs: Priority among the stacks. Returns agree
with the priority. When a stack pops, all higher priority stacks
are empty.

[ Theorem. S-W at most 2°. J

M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is
2ETIME-Complete. In M. Ito and M. Toyama, editors, Developments in Language
Theory, volume 5257, pages 121-133. Springer, 2008.

L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-pushdown
languages and grammars. Int. J. Found. Comput. Sci., 7(3):253-292, 1996.
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HMSCs (or MSGs)

Split-width bounded by the maximum split-width of
constituent MSCs
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HMSCs (or MSGs)

Split-width bounded by the maximum split-width of
constituent MSCs

Unlike CRPs, [anguage is not MSO definable.
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HMSCs ...

/\f \/-\f
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Add one process and edges to it in each node.

Language of this HMSC is MSO definable.

Obvious translation for MSO formulas via relativization.
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Tree-width/Clique-width

MSO decidability follows.

Technical argument, normalizing derivation trees.

Split-width is a “special case” that is easier to use in the
case of behaviours of CRPs.
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Tree-width/Clique-width

® Fasy translation from split-width to Tree/Clique width
MSO decidability follows.

® Clique-width to Split-width with linear blow up

Technical argument, normalizing derivation trees.

Split-width is a “special case” that is easier to use in the
case of behaviours of CRPs.
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Conclusions

o Split-width: a metric for under-approximate verification

Equivalent to tree width in power

® Provides a simple technique to prove decidability of all
known classes.

Visual, simple inductive reasoning, limited number of
cases to consider.

e Different view, suggests new “natural” classes.

e Schedulable subclasses.

Restrict to only verified behaviours
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