#### **Verification of Concurrent Recursive Programs**

#### **Verification of Concurrent Recursive Programs**

#### (an unified view via split-width)









### Recursive program = Pushdown system



func f1
{while <true>
 {call f1 OR
 a OR
 exit;}
 return;}

# Multi-threaded program = Multi-PDS



# Communicating FSMs



# Communicating FSMs



# Communicating FSMs



# **Communicating Recursive Processes** Stack 2 Queue 1 Queue 5 Process 2 Process 1 Process 3 Stack 3 Queue 2 Queue 6 Stack 1 Queue 4

Queue 3

# **Communicating Recursive Processes** Stack 2 Queue 1 Queue 5 Process 2 Process 1 Stack 3 Queue 2 Queue 6 Stack 1 Queue 4

Queue 3

MPDSs, CFSMs, CRPs are all Turing Powerful.

MPDSs, CFSMs, CRPs are all Turing Powerful.

- MPDSs -- Restrictions on the stack access
  - Bounded Context
  - Bounded Phase
  - Bounded Scope
  - Ordered Stacks

Qadeer&Rehof, LaTorre&Madhusudan&Parlato LaTorre&Napoli Atig&Bollig&Habermehl

MPDSs, CFSMs, CRPs are all Turing Powerful.

MPDSs, CFSMs, CRPs are all Turing Powerful.

- CFMs
  - Universally/Existentially bounded systems

Henrikson et al., Genest&Kuske&Muscholl

• Message Sequence Graphs (or HMSCs)

Madhusudan

MPDSs, CFSMs, CRPs are all Turing Powerful.

MPDSs, CFSMs, CRPs are all Turing Powerful.

- CRPs
  - Well-queueing Systems with context bounds,...

Heussner&Lerox,&Muscholl&Sutre, LaTorre&Madhusudan&Parlato



#### Nested word = word + binary nesting relation







Multiply Nested word (MNW) = word + multiple nesting relations





# And other beasts ...



- A finite number of linear orders (<<sub>p</sub>)
- One or more nesting relation per linear order Corresponding to the stacks (<s)
- Message relations betweens processes
   One per queue, assumed to be FIFO (<<sub>pq</sub>)

- A finite number of linear orders (<<sub>p</sub>)
- One or more nesting relations or linear order Corresponding to Relations (<s)</li>
   Message Matching betweens processes
- One per queue, assumed to be FIFO (<pp)

- A finite number of linear orders (<<sub>p</sub>)
- One or more nesting relation per linear order Corresponding to the stacks (<s)
- Message relations betweens processes
   One per queue, assumed to be FIFO (<<sub>pq</sub>)

Our graphs are

- A finite number of linear orders (<<sub>p</sub>)
- One or more nesting relation per linear order Corresponding to the stacks (<s)
- Message relations betweens processes
   One per queue, assumed to be FIFO (<ppq)</li>

MSO has one binary relation symbol for each of these relations.

Our graphs are

- A finite number of linear orders (<<sub>p</sub>)
- One or more nesting relation per linear order Corresponding to the stacks (<s)
- Message relations betweens processes
   One per queue, assumed to be FIFO (<pq)</li>

MSO has one binary relation symbol for each of these relations.

Satisfiability is undecidable with 2 nesting relations / 2 processes connected by queues

### Tree-width

#### Madhusudan/Parlato show that

# Tree-width

Madhusudan/Parlato show that

- Runs of the restricted systems have bounded tree-width
- For any system, its set of restricted runs is MSO definable.

## behaviors



# Split behaviors



# Split behaviors



# Size of the split = number of components = 4

## behaviors


## Split behaviors



#### Split behaviors



#### Size of the split = number of components = 4

#### An algebra on Split behaviours



Operations:

merge (binary)
shuffle (unary)









































Invalid!

























## Bounded split-width (k)

## If a split-behaviour can be generated by the algebra, with the size of all the splits used $\leq k$
















# Example: an MSCN



















•











# Model-Checking w.r.t Split-width k

Given a concurrent recursive program

Given two concurrent recursive programs

# Model-Checking w.r.t Split-width k

Given a concurrent recursive program

- Is there an accepting run with split-width <= k?
- Does it accept all split-width <= k words?

Given two concurrent recursive programs

• Are the split-width k-behaviours of one contained in those of the other?

# Model-Checking w.r.t Split-width k

Given a concurrent recursive program

- Is there an accepting run with split-width <= k?
- Does it accept all split-width <= k words?

Given two concurrent recursive programs

• Are the split-width k-behaviours of one contained in those of the other?

Abstract Derivation Trees

# Split-width <=k Runs

# Split-width <=k Runs

ADTs representing split-width k derivation trees form a regular tree language.

Easy tree automaton construction

## Split-width <=k Runs

ADTs representing split-width k derivation trees form a regular tree language.

Easy tree automaton construction

ADTs representing derivation trees of split-width k accepting runs of a CRP is a regular tree language.

Easy tree automaton construction. Size of the automaton is exponential in k.

# Decidability of Model-checking

### Input

S : CRP over a given set of processes. k : parameter (split-width)

| Emptiness    | ExpTime   |
|--------------|-----------|
| Universality | 2-ExpTime |
| Inclusion    | 2-ExpTime |

# Model-checking MSO formulas

Given a formula  $\phi$  over MSCNs we construct a formula  $\psi$  over ADTs such that

The interpretation:

# Model-checking MSO formulas

Given a formula  $\phi$  over MSCNs we construct a formula  $\psi$  over ADTs such that

For any MSCN M,  $M \vDash \varphi$  iff  $T \vDash \psi$  for any ADT T representing a split-width k derivation of M.

The interpretation:

- The domain is the set of leaves.
- Message, Nesting are checked examining "common" parent.
- Only process successor needs little bit of work















## Nested words have split-width $\leq 3$





#### Theorem. MSO is decidable over nested words (VPLs).

A *context* is a set of consecutive positions which involves at most one stack.



A *context* is a set of consecutive positions which involves at most one stack.



A *context* is a set of consecutive positions which involves at most one stack.



Bounded Scope MNWs: Fix parameter m. For any nesting edges, no more than m different contexts between its source and target.

S. La Torre and M. Napoli. Reachability of multistack pushdown systems with scope-bounded matching relations. In J.-P. Katoen and B. König, editors, *CON-CUR*, volume 6901, pages 203–218. Springer, 2011.

A *context* is a set of consecutive positions which involves at most one stack.



Bounded Scope MNWs: Fix parameter m. For any nesting edges, no more than m different contexts between its source and target.

#### *Theorem*. S-W at most m + 2.

S. La Torre and M. Napoli. Reachability of multistack pushdown systems with scope-bounded matching relations. In J.-P. Katoen and B. König, editors, *CON-CUR*, volume 6901, pages 203–218. Springer, 2011.

A *phase* is a set of consecutive positions which involves at most one stack.



A *phase* is a set of consecutive positions which involves at most one stack.



A *phase* is a set of consecutive positions which involves at most one stack.



Bounded Phase MNWs: Fix parameter p. At most p phases.

S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages. In *LICS*, pages 161–170. IEEE Computer Society, 2007.

A *phase* is a set of consecutive positions which involves at most one stack.



Bounded Phase MNWs: Fix parameter p. At most p phases.

*Theorem*. S-W at most 2<sup>p</sup>.

S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages. In *LICS*, pages 161–170. IEEE Computer Society, 2007.

## Ordered multi-pushdown systems



Ordered MNWs: Priority among the stacks. Returns agree with the priority. When a stack pops, all higher priority stacks are empty.

M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is 2ETIME-Complete. In M. Ito and M. Toyama, editors, *Developments in Language Theory*, volume 5257, pages 121–133. Springer, 2008.
L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-pushdown languages and grammars. *Int. J. Found. Comput. Sci.*, 7(3):253–292, 1996.

## Ordered multi-pushdown systems



Ordered MNWs: Priority among the stacks. Returns agree with the priority. When a stack pops, all higher priority stacks are empty.

*Theorem*. S-W at most 2<sup>s</sup>.

M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is 2ETIME-Complete. In M. Ito and M. Toyama, editors, *Developments in Language Theory*, volume 5257, pages 121–133. Springer, 2008.
L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-pushdown languages and grammars. *Int. J. Found. Comput. Sci.*, 7(3):253–292, 1996.

### HMSCs (or MSGs)



Split-width bounded by the maximum split-width of constituent MSCs

### HMSCs (or MSGs)



Split-width bounded by the maximum split-width of constituent MSCs

Unlike CRPs, language is not MSO definable.

#### HMSCs ...



Add one process and edges to it in each node.

Language of this HMSC is MSO definable.

Obvious translation for MSO formulas via relativization.

Tree-width/Clique-width

MSO decidability follows.

Technical argument, normalizing derivation trees.

Split-width is a "special case" that is easier to use in the case of behaviours of CRPs.

# Tree-width/Clique-width

• Easy translation from split-width to Tree/Clique width MSO decidability follows.

• Clique-width to Split-width with linear blow up Technical argument, normalizing derivation trees.

Split-width is a "special case" that is easier to use in the case of behaviours of CRPs.

# Conclusions

- Split-width: a metric for under-approximate verification Equivalent to tree width in power
- Provides a simple technique to prove decidability of all known classes.
  - Visual, simple inductive reasoning, limited number of cases to consider.
- Different view, suggests new "natural" classes.
- Schedulable subclasses.

Restrict to only verified behaviours