Monday 29 July 13

Verification of Concurrent Recursive Programs

her forthcom hD Thesis

Monday 29 July 13

Concurrent Recursive Programs

Monday 29 July 13

Concurrent Recursive Programs

<Variables range over finite domains>

Monday 29 July 13

Concurrent Recursive Programs

<Variables range over finite domains>

< Functions can be recursive >

Monday 29 July 13

Concurrent Recursive Programs

<Variables range over finite domains>

< Functions can be recursive >

Multi-threaded (shared state) or
Distributed Systems

Monday 29 July 13

Recursive program = Pushdown system

a,c
a
func f1 b
{while <true>
{call f1 OR C
a OR
exit;} b

return; }

Monday 29 July 13

Multi-threaded program = Multi-PDS

func f1 func £2 func £3
{while <true> {while <true> {while <true>
{call f1 OR {call £2 OR {call £3 OR
a OR a OR a OR
exit;} exit;} exit;}
return;} return;} return; }

Monday 29 July 13

Process 1

Queue 4

A4

Queue 1

Queue 2

Process 2

Communicating FSMs

Queue 5

Queue 3

Queue 6

Process 3

Monday 29 July 13

Process 1

Queue 4

A4

Queue 1

Queue 2

Process 2

Communicating FSMs

Queue 5

Queue 3

Queue 6

Process 3

Monday 29 July 13

Process 1

Queue 4

A4

Queue 1

Queue 2

Process 2

Communicating FSMs

Queue 5

Queue 3

Queue 6

Monday 29 July 13

Communicating Recursive Processes

Process 1

Queue 1

Stack 1

Queue 2

Queue 5

Stack 2
4)
Process 2
\§ J
Queue 4
Queue 3

Queue 6

Process 3

Stack 3

Monday 29 July 13

Communicating Recursive Processes

Process 1

Queue 1

Stack 1

Queue 2

Queue 5

Stack 2
4)
Process 2
\§ J
Queue 4
Queue 3

Queue 6

Stack 3

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

e MPDSs -- Restrictions on the stack access

® Bounded Context Qadeer&Rehof,
® Bouno ed Phase LaTorre&Madhusudan&Parlato
® Bounded Scope LaTorre&Napoli

o () rdered Stac kS Atig&Bollig&Habermehl

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

® CFMs
e Universally/Existentially bounded systems

Henrikson et al., Genest&Kuske&Muscholl

® Message Sequence Graphs (or HMSCs)

Madhusudan

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

® (CRPs

® Well-queueing Systems with context bounds,...
Heussner&Lerox,&Muscholl&Sutre, LaTorre&Madhusudan&Parlato

Monday 29 July 13

Behaviours as Graphs

a,c

func f1
{while <true>
{call f£1 OR
a OR b

exit;} >
return;}

Nested word
= word + binary nesting relation

Monday 29 July 13

Behaviours as Graphs

func f1 func £2 func f£3
{while <true> {while <true> {while <true>
{call f£1 OR {call f£f2 OR {call £3 OR

a OR a OR a OR
exit;} exit;} exit;} /???fé
return;} return;} return;}

7T — SN

O——C— —>0——> ——>0——>0—

Multiply Nested word (MNW)
= word + multiple nesting relations

a,c

Monday 29 July 13

Behaviours as Graphs

send a OR | reca OR

send b OR > Dbjbja 1 recbOR

Skip Queue 1 Skip
Process 1 Process 2

0E—0—0<—0
00000

Message Sequence Charts

Monday 29 July 13

Behaviours as Graphs

skip Queue 1 pop ¢ OR
skip

Process 1 Process 2

rec a OR
send a OR | rec b OR
send b OR > bibja T pushcOR \
| C

Stack 1

Message Sequence Charts with Nesting

Monday 29 July 13

And other beasts ...

Monday 29 July 13

Graphs and MSO

Our graphs are

Monday 29 July 13

Graphs and MSO

Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation per linear order
Corresponding to the stacks (<)

® Message relations betweens processes
One per queue, assumed to be FIFO (<)

Monday 29 July 13

Graphs and MSO

Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation oer linear order

S
Corresponding %Re\a‘\()f-\\b (<s)

® Message N\a\C\\..a betweens processes
One per queue, assumed to be FIFO (<)

Monday 29 July 13

Graphs and MSO

Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation per linear order
Corresponding to the stacks (<)

® Message relations betweens processes
One per queue, assumed to be FIFO (<)

Monday 29 July 13

Graphs and MSO

Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation per linear order
Corresponding to the stacks (<)

® Message relations betweens processes
One per queue, assumed to be FIFO (<)

MSO has one binary relation symbol for each of these
relations.

Monday 29 July 13

Graphs and MSO

Our graphs are
® A finite number of linear orders (<p)

® One or more nesting relation per linear order
Corresponding to the stacks (<)

® Message relations betweens processes
One per queue, assumed to be FIFO (<)

MSO has one binary relation symbol for each of these
relations.

Satisfiability is undecidable with 2 nesting relations /
2 processes connected by queues

|3

Monday 29 July 13

Tree-width

Madhusudan/Parlato show that

Monday 29 July 13

Tree-width

Madhusudan/Parlato show that

® Runs of the restricted systems have bounded tree-width

® For any system, its set of restricted runs is MSO definable.

Monday 29 July 13

behaviors

7T — N

Monday 29 July 13

Split behaviors

e SN

Split behaviors

ST SN,

Size of the split = number of components = 4

Monday 29 July 13

behaviors

0000

Monday 29 July 13

o0

Split behaviors

Split behaviors

o0

Size of the split = number of components = 4

An algebra on Split behaviours

. . 7~ 7~ A 7 A
Basic splits: 6 o 6 o ¢

Operations:

merge (binary)
shuffle (unary)

Monday 29 July 13

The merge Operation

e N

The merge Operation

e N

The merge Operation

e N

The merge Operation

N

The merge Operation

e N

The merge Operation

SN

The merge Operation

e N

The merge Operation

e N
* g

o<—0

The merge Operation

SN
.

0E—0—0<—0

The merge Operation

SN
?

0E—0—0<—0

The Shuffle Operation

0—>0—>0—>0 (>0 o ©0 0—>0—>0—>0 (>0

Monday 29 July 13

The Shuffle Operation

—>0—>0—>0 0>0 0 0 0—>0—>0—>0 (>0

0—>»0—>»0—>»0 0—>»0—>0—>»0 00 0o 0 0—>0 0

Monday 29 July 13

The Shuffle Operation

0—>0—>0—>0 (>0 o ©0 0—>0—>0—>0 (>0

Monday 29 July 13

The Shuffle Operation

—>0—>0—>0 0>0 0 0 0—>0—>0—>0 (>0

0—>0—>0—>0 (>0 O0—>0—>0—>0 (>0 0 0 0

Monday 29 July 13

The Shuffle Operation

0—>0—>0—>0 (>0 o ©0 0—>0—>0—>0 (>0

Monday 29 July 13

Shuffle Operation

Monday 29 July 13

Shuffle Operation

0—>0—>0—>0 (0—>0 0 0—>»>0—>0—>0 (>0 0 0 O

Monday 29 July 13

Shuffle Operation

0—>0—>0—>0 (0—>0 0 0—>»>0—>0—>0 (>0 0 0 O

Invalid!

Monday 29 July 13

Shuffle Operation

)

Shuffle Operation

Shuffle Operation

)

Shuffle Operation

>

Any behaviour can be generated by the algebra

Monday 29 July 13

Any behaviour can be generated by the algebra

Any behaviour can be generated by the algebra

% m
O- >0—>0— 00— 0—>0—>0—>0—>0—>0—>

Any behaviour can be generated by the algebra

N

Any behaviour can be generated by the algebra

?

0E—0—0<—0

Bounded split-width (k)

If a split-behaviour can be generated by the algebra,
with the size of all the splits used <k

Example: an MSCN

0E—0<—0—0

Example: an MSCN

0E—0<—0 ©O

2

0€—0<—0

Example: an MSCN

<0

0€—0<—0

Example: an MSCN

<0

o<—0

Example: an MSCN

Example: an MSCN

P ez e
N P BV ST
B SN

£2% ST
TN (TR T
L G O

. (AT

N T By

Monday 29 July 13

Monday 29 July 13

Model-Checking w.r.t Split-width k

Given a concurrent recursive program

Given two concurrent recursive programs

Monday 29 July 13

Model-Checking w.r.t Split-width k

Given a concurrent recursive program
® |s there an accepting run with split-width <= k?

® Does it accept all split-width <= k words?

Given two concurrent recursive programs

® Are the split-width k-behaviours of one contained in
those of the other?

Monday 29 July 13

Model-Checking w.r.t Split-width k

Given a concurrent recursive program
® |s there an accepting run with split-width <= k?

® Does it accept all split-width <= k words?

Given two concurrent recursive programs

® Are the split-width k-behaviours of one contained in
those of the other?

Abstract Derivation Trees

Monday 29 July 13

Split-width <=k Runs

Monday 29 July 13

Split-width <=k Runs

ADTs representing split-width k derivation trees
form a regular tree language.

Easy tree automaton construction

Monday 29 July 13

Split-width <=k Runs

ADTs representing split-width k derivation trees
form a regular tree language.

Easy tree automaton construction

ADTs representing derivation trees of split-width k
accepting runs of a CRP is a regular tree language.

Fasy tree automaton construction. Size of the
automaton is exponential in k.

Monday 29 July 13

Decidability of Model-checking

Input

S : CRP over a given set of processes.
k : parameter (split-width)

Emptiness ExpTime

Universality 2-ExpTime

Inclusion 2-ExpTime

Monday 29 July 13

Model-checking MSO formulas

Given a formula ¢ over MSCNs we construct a formula
over ADTs such that

The interpretation:

Monday 29 July 13

Model-checking MSO formulas

Given a formula ¢ over MSCNs we construct a formula @
over ADTs such that

Forany MSCN'M, M= @ iff TE W for any ADTT
representing a split-width k derivation of M.

The interpretation:
® The domain is the set of leaves.
® Message, Nesting are checked examining “common” parent.

® Only process successor needs little bit of work

Monday 29 July 13

..,
LIS

NP

11

Monday 29 July 13

Nested Words

Nested words have split-width < 3

S

Nested Words

Nested words have split-width < 3

A

Nested Words

Nested words have split-width < 3

e D

Nested Words

Nested words have split-width < 3

e DN e

Nested Words

Nested words have split-width < 3

O—>0——>0—0

NN

Nested Words

Nested words have split-width < 3

O—>0——>0—0

N

{Theorem. MSO is decidable over nested words (VPLs).

Monday 29 July 13

Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

T =N

—>—

Monday 29 July 13

Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

7T — N

> —F — —) > >

Monday 29 July 13

Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

O——>0O— —»>0—> ——> —>0—
> — — —) > >

Bounded Scope MNWs: Fix parameter m. For any nesting
edges, no more than m different contexts between its source
and target.

S. La Torre and M. Napoli. Reachability of multistack pushdown systems with
scope-bounded matching relations. In J.-P. Katoen and B. Konig, editors, CON-
CUR, volume 6901, pages 203-218. Springer, 2011.

Monday 29 July 13

Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves

at most one stack.

O——>0O— —»>0—> ——> —>0—
> — — —) > >

Bounded Scope MNWs: Fix parameter m. For any nesting
edges, no more than m different contexts between its source
and target.

{Theorem. S-W at most m + 2.

S. La Torre and M. Napoli. Reachability of multistack pushdown systems with
scope-bounded matching relations. In J.-P. Katoen and B. Konig, editors, CON-
CUR, volume 6901, pages 203-218. Springer, 2011.

Monday 29 July 13

Bounded phase multi-pushdown systems

A phase is a set of consecutive positions which involves at
most one stack.

Monday 29 July 13

Bounded phase multi-pushdown systems

A phase is a set of consecutive positions which involves at
most one stack.

TS

Monday 29 July 13

Bounded phase multi-pushdown systems

A phase is a set of consecutive positions which involves at
most one stack.

Bounded Phase MNWs: Fix parameter p. At most p phases.

S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS, pages 161-170. IEEE Computer Society, 2007.

Monday 29 July 13

Bounded phase multi-pushdown systems

A phase is a set of consecutive positions which involves at
most one stack.

Bounded Phase MNWs: Fix parameter p. At most p phases.

LTheorem. S-W at most 2P .

S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS, pages 161-170. IEEE Computer Society, 2007.

Monday 29 July 13

Ordered multi-pushdown systems

=

—>0——> ——>O——>0—

Ordered MNWs: Priority among the stacks. Returns agree
with the priority. When a stack pops, all higher priority stacks
are empty.

M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is
2ETIME-Complete. In M. Ito and M. Toyama, editors, Developments in Language
Theory, volume 5257, pages 121-133. Springer, 2008.

L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-pushdown
languages and grammars. Int. J. Found. Comput. Sci., 7(3):253-292, 1996.

Monday 29 July 13

Ordered multi-pushdown systems

=

—>0——> ——>O——>0—

Ordered MNWs: Priority among the stacks. Returns agree
with the priority. When a stack pops, all higher priority stacks
are empty.

[Theorem. S-W at most 2°. J

M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is
2ETIME-Complete. In M. Ito and M. Toyama, editors, Developments in Language
Theory, volume 5257, pages 121-133. Springer, 2008.

L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-pushdown
languages and grammars. Int. J. Found. Comput. Sci., 7(3):253-292, 1996.

Monday 29 July 13

HMSCs (or MSGs)

Split-width bounded by the maximum split-width of
constituent MSCs

Monday 29 July 13

HMSCs (or MSGs)

Split-width bounded by the maximum split-width of
constituent MSCs

Unlike CRPs, [anguage is not MSO definable.

Monday 29 July 13

HMSCs ...

/\f \/-\f

|

“~__

\Ru

_/k

Add one process and edges to it in each node.

Language of this HMSC is MSO definable.

Obvious translation for MSO formulas via relativization.

Monday 29 July 13

Tree-width/Clique-width

MSO decidability follows.

Technical argument, normalizing derivation trees.

Split-width is a “special case” that is easier to use in the
case of behaviours of CRPs.

Monday 29 July 13

Tree-width/Clique-width

® Fasy translation from split-width to Tree/Clique width
MSO decidability follows.

® Clique-width to Split-width with linear blow up

Technical argument, normalizing derivation trees.

Split-width is a “special case” that is easier to use in the
case of behaviours of CRPs.

Monday 29 July 13

Conclusions

o Split-width: a metric for under-approximate verification

Equivalent to tree width in power

® Provides a simple technique to prove decidability of all
known classes.

Visual, simple inductive reasoning, limited number of
cases to consider.

e Different view, suggests new “natural” classes.

e Schedulable subclasses.

Restrict to only verified behaviours

Monday 29 July 13

