
Verification of Concurrent Recursive Programs

Monday 29 July 13

Verification of Concurrent Recursive Programs

(an unified view via split-width)

From her forthcoming PhD Thesis

Monday 29 July 13

 Recursive Programs Concurrent

Monday 29 July 13

 Recursive Programs Concurrent

Variables range over finite domains

Monday 29 July 13

 Recursive Programs

Functions can be recursive

 Concurrent

Variables range over finite domains

Monday 29 July 13

 Recursive Programs

Functions can be recursive

 Concurrent

Multi-threaded (shared state) or
Distributed Systems

Variables range over finite domains

Monday 29 July 13

Recursive program = Pushdown system

3

func f1
{while <true>
{call f1 OR

a OR
exit;}

return;}

a

b

c

a,c

b

Monday 29 July 13

Multi-threaded program = Multi-PDS

4

func f1
{while <true>
{call f1 OR

a OR
exit;}

return;}

func f2
{while <true>
{call f2 OR

a OR
exit;}

return;}

func f3
{while <true>
{call f3 OR

a OR
exit;}

return;}
a

b

c

a,c

b

Monday 29 July 13

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Communicating FSMs

Queue 4

Queue 3

Monday 29 July 13

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Communicating FSMs

Queue 4

Queue 3

a

b

c

a,c

b

Monday 29 July 13

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Communicating FSMs

Queue 4

Queue 3

a

b

c

a,c

b

Monday 29 July 13

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Communicating Recursive Processes

Queue 4

Queue 3

Stack 3
Stack 1

Stack 2

Monday 29 July 13

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Communicating Recursive Processes

Queue 4

Queue 3

Stack 3
Stack 1

Stack 2

a

b

c

a,c

b

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

7

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

7

• MPDSs -- Restrictions on the stack access
• Bounded Context
• Bounded Phase
• Bounded Scope
• Ordered Stacks

Qadeer&Rehof,

LaTorre&Madhusudan&Parlato

LaTorre&Napoli

 Atig&Bollig&Habermehl

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

7

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

7

• CFMs
• Universally/Existentially bounded systems

• Message Sequence Graphs (or HMSCs)
Henrikson et al., Genest&Kuske&Muscholl

Madhusudan

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

7

Monday 29 July 13

The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful.

7

• CRPs
• Well-queueing Systems with context bounds,...

Heussner&Lerox,&Muscholl&Sutre, LaTorre&Madhusudan&Parlato

Monday 29 July 13

func f1
{while <true>
{call f1 OR

a OR
exit;}

return;}

Nested word
= word + binary nesting relation

a

b

c

a,c

b

Behaviours as Graphs

Monday 29 July 13

Multiply Nested word (MNW)
= word + multiple nesting relations

a

b

c

a,c

b

func f1
{while <true>
{call f1 OR

a OR
exit;}

return;}

func f2
{while <true>
{call f2 OR

a OR
exit;}

return;}

func f3
{while <true>
{call f3 OR

a OR
exit;}

return;}

Behaviours as Graphs

Monday 29 July 13

Behaviours as Graphs

Queue 1

send a OR
send b OR
skip

rec a OR
rec b OR
skip

Process 1 Process 2

abb

Message Sequence Charts

Monday 29 July 13

11

Queue 1

Stack 1

send a OR
send b OR
skip

rec a OR
rec b OR
push c OR
pop c OR
skip

Process 1 Process 2

ab

c

b

Behaviours as Graphs

Message Sequence Charts with Nesting

Monday 29 July 13

And other beasts ...

5. If pe
1

, f

1

q P �
nst

Y�
msg

and pe
2

, f

2

q P �
nst

Y�
msg

and pe
1

, f

1

q ‰ pe
2

, f

2

q,
then |te

1

, f

1

, e

2

, f

2

u| “ 4. In other words, the four events are pairwise
disjoint.

MSCNs enjoy a natural graphical representation.

Example 4. An MSCN over A
1

is shown in Figure 1.3.Each process is rep- architecture in example 1 +

explanation

architecture in example 1 +

explanationresented by a vertical line. The relation �
proc

orders (top-down) consecutive
events located on the same process line. The messages (�

msg

) are depicted by
straight edges (solid and dotted) connecting di↵erent lines and nesting edges
(�

nst

) are depicted by curved edges (solid and dotted) connecting within a line.
More specifically, �1

nst

is depicted by solid curved edges on process 1, �2

nst

by
dotted curved edges on process 1 and �3

nst

is depicted by solid curved edges on
process 3. �1

msg

is depicted by solid straight edges from process 1 to process
2, �2

msg

by dotted straight edges from process 1 to process 2, �3

msg

by solid
straight edges from process 2 to process 1, �4

msg

by dotted straight edges from
process 2 to process 1, �5

msg

by solid straight edges from process 2 to process 3,
�6

msg

by solid straight edges from process 3 to process 2, and �7

msg

is depicted
by doted straight edges from process 3 to process 2. The action labels, message
labels and the labels on nesting edges are not shown as it is unary.

1 2 3

Figure 1.3: An MSCN over Architecture A
1

Example 5. an mscn over Arch2

7

Monday 29 July 13

Graphs and MSO

Our graphs are

13

Monday 29 July 13

Graphs and MSO

Our graphs are

13

• Message relations betweens processes
 One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order
 Corresponding to the stacks (<s)

• A finite number of linear orders (<p)

Monday 29 July 13

Graphs and MSO

Our graphs are

13

• Message relations betweens processes
 One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order
 Corresponding to the stacks (<s)

• A finite number of linear orders (<p)

Matching Relations

Monday 29 July 13

Graphs and MSO

Our graphs are

13

• Message relations betweens processes
 One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order
 Corresponding to the stacks (<s)

• A finite number of linear orders (<p)

Monday 29 July 13

Graphs and MSO

Our graphs are

13

• Message relations betweens processes
 One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order
 Corresponding to the stacks (<s)

• A finite number of linear orders (<p)

MSO has one binary relation symbol for each of these
relations.

Monday 29 July 13

Graphs and MSO

Our graphs are

13

• Message relations betweens processes
 One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order
 Corresponding to the stacks (<s)

• A finite number of linear orders (<p)

MSO has one binary relation symbol for each of these
relations.

Satisfiability is undecidable with 2 nesting relations /
2 processes connected by queues

Monday 29 July 13

Tree-width

Madhusudan/Parlato show that

14

Monday 29 July 13

Tree-width

Madhusudan/Parlato show that

14

• Runs of the restricted systems have bounded tree-width

• For any system, its set of restricted runs is MSO definable.

Monday 29 July 13

behaviors

Monday 29 July 13

behaviorsSplit

Monday 29 July 13

behaviorsSplit

Size of the split = number of components = 4

Monday 29 July 13

behaviors

Monday 29 July 13

behaviorsSplit

Monday 29 July 13

Size of the split = number of components = 4

behaviorsSplit

Monday 29 July 13

An algebra on Split behaviours

shuffle (unary)

Basic splits:

merge (binary)

Operations:

Monday 29 July 13

The merge Operation

Monday 29 July 13

The merge Operation

Monday 29 July 13

The merge Operation

Monday 29 July 13

The merge Operation

Monday 29 July 13

The merge Operation

Monday 29 July 13

The merge Operation

Monday 29 July 13

The merge Operation

Monday 29 July 13

The merge Operation

Monday 29 July 13

The merge Operation

Monday 29 July 13

The merge Operation

Monday 29 July 13

The Shuffle Operation

Monday 29 July 13

The Shuffle Operation

Monday 29 July 13

The Shuffle Operation

Monday 29 July 13

The Shuffle Operation

Monday 29 July 13

The Shuffle Operation

Monday 29 July 13

Shuffle Operation

Monday 29 July 13

Shuffle Operation

Monday 29 July 13

Shuffle Operation

Invalid!

Monday 29 July 13

Shuffle Operation

Monday 29 July 13

Shuffle Operation

Monday 29 July 13

Shuffle Operation

Monday 29 July 13

Shuffle Operation

Monday 29 July 13

Any behaviour can be generated by the algebra

Monday 29 July 13

Any behaviour can be generated by the algebra

Monday 29 July 13

Any behaviour can be generated by the algebra

Monday 29 July 13

Any behaviour can be generated by the algebra

Monday 29 July 13

Any behaviour can be generated by the algebra

Monday 29 July 13

Bounded split-width (k)

If a split-behaviour can be generated by the algebra,
with the size of all the splits used ≤ k

Monday 29 July 13

Example: an MSCN

Monday 29 July 13

Example: an MSCN

Monday 29 July 13

Example: an MSCN

Monday 29 July 13

Example: an MSCN

Monday 29 July 13

Example: an MSCN

Monday 29 July 13

Example: an MSCN

Monday 29 July 13

Monday 29 July 13

Monday 29 July 13

Model-Checking w.r.t Split-width k

Given a concurrent recursive program

Given two concurrent recursive programs

Monday 29 July 13

Model-Checking w.r.t Split-width k

Given a concurrent recursive program

• Does it accept all split-width <= k words?

• Is there an accepting run with split-width <= k?

Given two concurrent recursive programs

• Are the split-width k-behaviours of one contained in
 those of the other?

Monday 29 July 13

Model-Checking w.r.t Split-width k

Given a concurrent recursive program

• Does it accept all split-width <= k words?

• Is there an accepting run with split-width <= k?

Given two concurrent recursive programs

• Are the split-width k-behaviours of one contained in
 those of the other?

Abstract Derivation Trees

Monday 29 July 13

Split-width <=k Runs

Monday 29 July 13

Split-width <=k Runs

 Easy tree automaton construction

ADTs representing split-width k derivation trees
form a regular tree language.

Monday 29 July 13

Split-width <=k Runs

 Easy tree automaton construction

ADTs representing split-width k derivation trees
form a regular tree language.

ADTs representing derivation trees of split-width k
accepting runs of a CRP is a regular tree language.

Easy tree automaton construction. Size of the
automaton is exponential in k.

Monday 29 July 13

Decidability of Model-checking

Emptiness ExpTime

Universality 2-ExpTime

Inclusion 2-ExpTime

S : CRP over a given set of processes.
k : parameter (split-width)

Input

Monday 29 July 13

Model-checking MSO formulas

Given a formula φ over MSCNs we construct a formula ψ
over ADTs such that

The interpretation:

Monday 29 July 13

Model-checking MSO formulas

Given a formula φ over MSCNs we construct a formula ψ
over ADTs such that

For any MSCN M, M ⊨ φ iff T ⊨ ψ for any ADT T
representing a split-width k derivation of M.

The interpretation:

• The domain is the set of leaves.

• Message, Nesting are checked examining “common” parent.

• Only process successor needs little bit of work

Monday 29 July 13

1 2

"

1 2

1

1 2

11

1 2

1 2

12

1 2

1 2
1 2 1 2

21

1 2

1 2

1 2

1 2

1 2

1 2

1 2
1 2 1 2

21

1 2 1 2 2 2

Figure 2.2: A 4-decomposition-tree and its abstraction

Definition 4 (Split-width). A decomposition-tree (DT) of a split-MSCN M is
a binary tree t labelled with split-MSCNs such that 1) leaves are labelled with
basic split-MSCNs, 2) every internal node x having a single child y in t satisfies
tpxq P mergeptpyqq, and 3) every internal node x having two children y and z in
t satisfies tpxq P tpyq tpzq.

A split-MSCN M is k-decomposable if it admits a DT labelled with split-
MSCNs of size at most k. The split-width of M is the least k such that M

is k-decomposable. We denote by k-SW the class of MSCNs which are k-
decomposable, i.e., of split-width at most k.

A 4-DT is shown on the left of Figure 2.2. Note that any split-MSCN is k-
decomposable for some k. The above definition of split-width is inspired by the
algebraic definition of tree-width. We choose split-width instead of tree-width
as this notion is well-suited for MSCNs and yields simpler proofs.

A main result of this paper is that, for the class of MSCNs with bounded
split-width, satisfiability is decidable for MSO or PDL formulas, and that vari-
ous model-checking problems for communicating recursive systems are also de-
cidable. The proof technique is to consider finitely labelled abstractions of
decomposition-trees for MSCNs in k-SW.

Figure 2.2 shows a 4-DT on the left and its abstraction (ADT) on the right.
Then, we can build a tree automaton A

k

accepting the ADTs encoding MSCNs
of split-width at most k. A formula � in MSO or PDL over MSCNs can be inter-
preted on ADTs and we can build a corresponding tree automaton Ap�q. Given
a communicating recursive system S, we can also construct a tree automaton

15

1 2

"

1 2

1

1 2

11

1 2

1 2

12

1 2

1 2
1 2 1 2

21

1 2

1 2

1 2

1 2

1 2

1 2

1 2
1 2 1 2

21

1 2 1 2 2 2

Figure 2.2: A 4-decomposition-tree and its abstraction

Definition 4 (Split-width). A decomposition-tree (DT) of a split-MSCN M is
a binary tree t labelled with split-MSCNs such that 1) leaves are labelled with
basic split-MSCNs, 2) every internal node x having a single child y in t satisfies
tpxq P mergeptpyqq, and 3) every internal node x having two children y and z in
t satisfies tpxq P tpyq tpzq.

A split-MSCN M is k-decomposable if it admits a DT labelled with split-
MSCNs of size at most k. The split-width of M is the least k such that M

is k-decomposable. We denote by k-SW the class of MSCNs which are k-
decomposable, i.e., of split-width at most k.

A 4-DT is shown on the left of Figure 2.2. Note that any split-MSCN is k-
decomposable for some k. The above definition of split-width is inspired by the
algebraic definition of tree-width. We choose split-width instead of tree-width
as this notion is well-suited for MSCNs and yields simpler proofs.

A main result of this paper is that, for the class of MSCNs with bounded
split-width, satisfiability is decidable for MSO or PDL formulas, and that vari-
ous model-checking problems for communicating recursive systems are also de-
cidable. The proof technique is to consider finitely labelled abstractions of
decomposition-trees for MSCNs in k-SW.

Figure 2.2 shows a 4-DT on the left and its abstraction (ADT) on the right.
Then, we can build a tree automaton A

k

accepting the ADTs encoding MSCNs
of split-width at most k. A formula � in MSO or PDL over MSCNs can be inter-
preted on ADTs and we can build a corresponding tree automaton Ap�q. Given
a communicating recursive system S, we can also construct a tree automaton

15

Monday 29 July 13

Nested words have split-width ≤ 3

Nested Words

Monday 29 July 13

Nested words have split-width ≤ 3

Nested Words

Monday 29 July 13

Nested words have split-width ≤ 3

Nested Words

Monday 29 July 13

Nested words have split-width ≤ 3

Nested Words

Monday 29 July 13

Nested words have split-width ≤ 3

Nested Words

Monday 29 July 13

Nested words have split-width ≤ 3

Nested Words

Theorem. MSO is decidable over nested words (VPLs).

Monday 29 July 13

Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

Monday 29 July 13

Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

Monday 29 July 13

Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

Bounded Scope MNWs: Fix parameter m. For any nesting
edges, no more than m different contexts between its source
and target.

Monday 29 July 13

Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves
at most one stack.

Bounded Scope MNWs: Fix parameter m. For any nesting
edges, no more than m different contexts between its source
and target.

Theorem. S-W at most m + 2.

Monday 29 July 13

A phase is a set of consecutive positions which involves at
most one stack.

Bounded phase multi-pushdown systems

Monday 29 July 13

A phase is a set of consecutive positions which involves at
most one stack.

Bounded phase multi-pushdown systems

Monday 29 July 13

A phase is a set of consecutive positions which involves at
most one stack.

Bounded Phase MNWs: Fix parameter p. At most p phases.

Bounded phase multi-pushdown systems

Monday 29 July 13

A phase is a set of consecutive positions which involves at
most one stack.

Bounded Phase MNWs: Fix parameter p. At most p phases.

Theorem. S-W at most 2p .

Bounded phase multi-pushdown systems

Monday 29 July 13

 Ordered MNWs: Priority among the stacks. Returns agree
with the priority. When a stack pops, all higher priority stacks
are empty.

Ordered multi-pushdown systems

Monday 29 July 13

 Ordered MNWs: Priority among the stacks. Returns agree
with the priority. When a stack pops, all higher priority stacks
are empty.

Theorem. S-W at most 2s .

Ordered multi-pushdown systems

Monday 29 July 13

HMSCs (or MSGs)

Split-width bounded by the maximum split-width of
constituent MSCs

Monday 29 July 13

HMSCs (or MSGs)

Split-width bounded by the maximum split-width of
constituent MSCs

Unlike CRPs, language is not MSO definable.

Monday 29 July 13

HMSCs ...

Add one process and edges to it in each node.

Language of this HMSC is MSO definable.

Obvious translation for MSO formulas via relativization.

Monday 29 July 13

Tree-width/Clique-width

MSO decidability follows.

Technical argument, normalizing derivation trees.

Split-width is a “special case” that is easier to use in the
case of behaviours of CRPs.

Monday 29 July 13

Tree-width/Clique-width

• Clique-width to Split-width with linear blow up

• Easy translation from split-width to Tree/Clique width

MSO decidability follows.

Technical argument, normalizing derivation trees.

Split-width is a “special case” that is easier to use in the
case of behaviours of CRPs.

Monday 29 July 13

•Split-width: a metric for under-approximate verification

 Equivalent to tree width in power

Conclusions

•Provides a simple technique to prove decidability of all
 known classes.

•Schedulable subclasses.

 Restrict to only verified behaviours

Visual, simple inductive reasoning, limited number of
cases to consider.

•Different view, suggests new “natural” classes.

Monday 29 July 13

