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Verification of Concurrent Recursive Programs

(an unified view via split-width)

From her forthcoming PhD Thesis
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 Recursive Programs

Functions can be recursive

 Concurrent

Multi-threaded (shared state)  or 
Distributed Systems

Variables range over finite domains
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Recursive program = Pushdown system

3

func f1
{while <true>
{call f1 OR 

a OR 
exit;}

return;} 

a

b

c

a,c

b
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Multi-threaded program = Multi-PDS

4

func f1
{while <true>
{call f1 OR 

a OR 
exit;}

return;} 

func f2
{while <true>
{call f2 OR 

a OR 
exit;}

return;} 

func f3
{while <true>
{call f3 OR 

a OR 
exit;}

return;} 
a

b

c

a,c

b
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Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Communicating FSMs

Queue 4

Queue 3
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Queue 4

Queue 3
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Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Communicating Recursive Processes

Queue 4

Queue 3

Stack 3
Stack 1

Stack 2
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Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Communicating Recursive Processes

Queue 4

Queue 3

Stack 3
Stack 1

Stack 2

a

b

c

a,c

b
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful. 

7
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful. 

7

• MPDSs -- Restrictions on the stack access 
• Bounded Context
• Bounded Phase
• Bounded Scope
• Ordered Stacks

Qadeer&Rehof,

LaTorre&Madhusudan&Parlato

LaTorre&Napoli

 Atig&Bollig&Habermehl
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful. 
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful. 

7

• CFMs 
• Universally/Existentially  bounded systems  

• Message Sequence Graphs (or HMSCs) 
Henrikson et al., Genest&Kuske&Muscholl

Madhusudan
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful. 

7
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The Verification Problem

MPDSs, CFSMs, CRPs are all Turing Powerful. 

7

• CRPs
• Well-queueing Systems with context bounds,...

Heussner&Lerox,&Muscholl&Sutre, LaTorre&Madhusudan&Parlato
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func f1
{while <true>
{call f1 OR 

a OR 
exit;}

return;} 

Nested word 
= word + binary nesting relation

a

b

c

a,c

b

Behaviours as Graphs
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Multiply Nested word (MNW) 
= word + multiple nesting relations

a

b

c

a,c

b

func f1
{while <true>
{call f1 OR 

a OR 
exit;}

return;} 

func f2
{while <true>
{call f2 OR 

a OR 
exit;}

return;} 

func f3
{while <true>
{call f3 OR 

a OR 
exit;}

return;} 

Behaviours as Graphs
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Behaviours as Graphs

Queue 1

send a OR
send b OR
skip

rec a OR
rec b OR
skip

Process 1 Process 2

abb

Message Sequence Charts
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11

Queue 1

Stack 1

send a OR
send b OR
skip

rec a OR
rec b OR
push c OR
pop c OR
skip

Process 1 Process 2

ab

c

b

Behaviours as Graphs

Message Sequence Charts with Nesting
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And other beasts ...

5. If pe
1

, f

1

q P �
nst

Y�
msg

and pe
2

, f

2

q P �
nst

Y�
msg

and pe
1

, f

1

q ‰ pe
2

, f

2

q,
then |te

1

, f

1

, e

2

, f

2

u| “ 4. In other words, the four events are pairwise
disjoint.

MSCNs enjoy a natural graphical representation.

Example 4. An MSCN over A
1

is shown in Figure 1.3.Each process is rep- architecture in example 1 +

explanation

architecture in example 1 +

explanationresented by a vertical line. The relation �
proc

orders (top-down) consecutive
events located on the same process line. The messages (�

msg

) are depicted by
straight edges (solid and dotted) connecting di↵erent lines and nesting edges
(�

nst

) are depicted by curved edges (solid and dotted) connecting within a line.
More specifically, �1

nst

is depicted by solid curved edges on process 1, �2

nst

by
dotted curved edges on process 1 and �3

nst

is depicted by solid curved edges on
process 3. �1

msg

is depicted by solid straight edges from process 1 to process
2, �2

msg

by dotted straight edges from process 1 to process 2, �3

msg

by solid
straight edges from process 2 to process 1, �4

msg

by dotted straight edges from
process 2 to process 1, �5

msg

by solid straight edges from process 2 to process 3,
�6

msg

by solid straight edges from process 3 to process 2, and �7

msg

is depicted
by doted straight edges from process 3 to process 2. The action labels, message
labels and the labels on nesting edges are not shown as it is unary.

1 2 3

Figure 1.3: An MSCN over Architecture A
1

Example 5. an mscn over Arch2

7
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Graphs and MSO

Our graphs are 

13
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Graphs and MSO

Our graphs are 

13

• Message relations betweens processes
        One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order 
        Corresponding to the stacks  (<s)

• A finite number of linear orders (<p)
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Graphs and MSO

Our graphs are 

13

• Message relations betweens processes
        One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order 
        Corresponding to the stacks  (<s)

• A finite number of linear orders (<p)

Matching Relations
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Our graphs are 

13

• Message relations betweens processes
        One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order 
        Corresponding to the stacks  (<s)

• A finite number of linear orders (<p)
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Graphs and MSO

Our graphs are 

13

• Message relations betweens processes
        One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order 
        Corresponding to the stacks  (<s)

• A finite number of linear orders (<p)

MSO has one binary relation symbol for each of these 
relations.
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Graphs and MSO

Our graphs are 

13

• Message relations betweens processes
        One per queue, assumed to be FIFO (<pq)

• One or more nesting relation per linear order 
        Corresponding to the stacks  (<s)

• A finite number of linear orders (<p)

MSO has one binary relation symbol for each of these 
relations.

Satisfiability is undecidable with 2 nesting relations / 
2 processes connected by queues

Monday 29 July 13



Tree-width

Madhusudan/Parlato show that 

14
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Tree-width

Madhusudan/Parlato show that 

14

• Runs of the restricted systems have bounded tree-width

• For any system, its set of restricted runs is MSO definable.
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behaviors
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behaviorsSplit 
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behaviorsSplit 

Size of the split = number of components = 4
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behaviors

Monday 29 July 13



behaviorsSplit 
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Size of the split = number of components = 4

behaviorsSplit 
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An algebra on Split behaviours

shuffle  (unary)

Basic splits:

merge (binary)

Operations: 
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The merge Operation
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The Shuffle Operation
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The Shuffle Operation
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Shuffle Operation
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Shuffle Operation
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Shuffle Operation

Invalid!
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Shuffle Operation
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Shuffle Operation
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Shuffle Operation
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Any behaviour can be generated by the algebra
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Any behaviour can be generated by the algebra
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Bounded split-width (k)

If a split-behaviour can be generated by the algebra,
with the size of all the splits used ≤ k
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Example: an MSCN
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Model-Checking w.r.t Split-width k

Given a concurrent recursive program 

Given two concurrent recursive programs
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Model-Checking w.r.t Split-width k

Given a concurrent recursive program 

• Does it accept all split-width <= k words?

• Is there an accepting run with split-width <= k?

Given two concurrent recursive programs

• Are the split-width k-behaviours of one contained in
    those of the other?
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Model-Checking w.r.t Split-width k

Given a concurrent recursive program 

• Does it accept all split-width <= k words?

• Is there an accepting run with split-width <= k?

Given two concurrent recursive programs

• Are the split-width k-behaviours of one contained in
    those of the other?

Abstract Derivation Trees
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Split-width <=k Runs
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Split-width <=k Runs

  Easy tree automaton construction

ADTs representing split-width k derivation trees 
form a regular tree language. 
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Split-width <=k Runs

  Easy tree automaton construction

ADTs representing split-width k derivation trees 
form a regular tree language. 

ADTs representing derivation trees of split-width k 
accepting runs of a CRP is a regular tree language.

Easy tree automaton construction. Size of the 
automaton is exponential in k.
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Decidability of Model-checking

Emptiness ExpTime

Universality 2-ExpTime

Inclusion 2-ExpTime

S : CRP over a given set of processes.
k : parameter (split-width)

Input
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Model-checking MSO formulas

Given a formula φ over MSCNs we construct a formula ψ
over ADTs such that 

The interpretation: 
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Model-checking MSO formulas

Given a formula φ over MSCNs we construct a formula ψ
over ADTs such that 

For any MSCN M, M ⊨ φ iff T ⊨ ψ for any ADT T
representing  a split-width k derivation of M.

The interpretation: 

• The domain is the set of leaves.

• Message, Nesting are checked examining “common” parent.

• Only process successor needs little bit of work
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Figure 2.2: A 4-decomposition-tree and its abstraction

Definition 4 (Split-width). A decomposition-tree (DT) of a split-MSCN M is
a binary tree t labelled with split-MSCNs such that 1) leaves are labelled with
basic split-MSCNs, 2) every internal node x having a single child y in t satisfies
tpxq P mergeptpyqq, and 3) every internal node x having two children y and z in
t satisfies tpxq P tpyq tpzq.

A split-MSCN M is k-decomposable if it admits a DT labelled with split-
MSCNs of size at most k. The split-width of M is the least k such that M

is k-decomposable. We denote by k-SW the class of MSCNs which are k-
decomposable, i.e., of split-width at most k.

A 4-DT is shown on the left of Figure 2.2. Note that any split-MSCN is k-
decomposable for some k. The above definition of split-width is inspired by the
algebraic definition of tree-width. We choose split-width instead of tree-width
as this notion is well-suited for MSCNs and yields simpler proofs.

A main result of this paper is that, for the class of MSCNs with bounded
split-width, satisfiability is decidable for MSO or PDL formulas, and that vari-
ous model-checking problems for communicating recursive systems are also de-
cidable. The proof technique is to consider finitely labelled abstractions of
decomposition-trees for MSCNs in k-SW.

Figure 2.2 shows a 4-DT on the left and its abstraction (ADT) on the right.
Then, we can build a tree automaton A

k

accepting the ADTs encoding MSCNs
of split-width at most k. A formula � in MSO or PDL over MSCNs can be inter-
preted on ADTs and we can build a corresponding tree automaton Ap�q. Given
a communicating recursive system S, we can also construct a tree automaton
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Nested words have split-width ≤ 3

Nested Words
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Nested words have split-width ≤ 3

Nested Words
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Nested words have split-width ≤ 3

Nested Words
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Nested words have split-width ≤ 3

Nested Words

Theorem.  MSO is decidable over nested words (VPLs).

Monday 29 July 13



Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves 
at most one stack.
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Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves 
at most one stack.

Bounded Scope MNWs:  Fix parameter m. For any nesting 
edges, no more than m different contexts between its source 
and target.

Monday 29 July 13



Bounded scope multi-pushdown systems

A context is a set of consecutive positions which involves 
at most one stack.

Bounded Scope MNWs:  Fix parameter m. For any nesting 
edges, no more than m different contexts between its source 
and target.

Theorem. S-W at most m + 2.
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A phase is a set of consecutive positions which involves at 
most one stack.

Bounded phase multi-pushdown systems
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A phase is a set of consecutive positions which involves at 
most one stack.

Bounded phase multi-pushdown systems

Monday 29 July 13



A phase is a set of consecutive positions which involves at 
most one stack.

Bounded Phase MNWs:  Fix parameter p. At most p phases.

Bounded phase multi-pushdown systems
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A phase is a set of consecutive positions which involves at 
most one stack.

Bounded Phase MNWs:  Fix parameter p. At most p phases.

Theorem. S-W at most 2p .

Bounded phase multi-pushdown systems
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 Ordered MNWs:  Priority among the stacks. Returns agree 
with the priority. When a stack pops, all higher priority stacks 
are empty.

Ordered multi-pushdown systems
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 Ordered MNWs:  Priority among the stacks. Returns agree 
with the priority. When a stack pops, all higher priority stacks 
are empty.

Theorem.  S-W at most 2s .

Ordered multi-pushdown systems
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HMSCs (or MSGs)

Split-width bounded by the maximum split-width of
constituent MSCs
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HMSCs (or MSGs)

Split-width bounded by the maximum split-width of
constituent MSCs

Unlike CRPs, language is not MSO definable.
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HMSCs ...

Add one process and edges to it in each node. 

Language of this HMSC is MSO definable.

Obvious translation for MSO formulas via relativization.
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Tree-width/Clique-width

MSO decidability follows.

Technical argument, normalizing derivation trees.

Split-width is a “special case” that is easier to use in the
case of behaviours of CRPs.
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Tree-width/Clique-width

• Clique-width to Split-width with linear blow up

• Easy translation from split-width to Tree/Clique width

MSO decidability follows.

Technical argument, normalizing derivation trees.

Split-width is a “special case” that is easier to use in the
case of behaviours of CRPs.
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•Split-width: a metric for under-approximate verification

       Equivalent to tree width in power

Conclusions

•Provides a simple technique to prove decidability of all 
   known classes.

•Schedulable subclasses. 

      Restrict to only verified behaviours

Visual, simple inductive reasoning, limited number of
cases to consider.

•Different view, suggests new “natural” classes.
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