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Summary of the contributions:

Reduces proving lock-freedom to modular thread local termination of concurrent
programs in which each thread executes a finite number of data-structure operations.

Introduces a compensation based quantitative reasoning technique for proving
lock-freedom.

Formalises the technique by extending Concurrent Separation Logic (CSL) for total
correctness.

Demonstrates the lock-free property exhibited by data structures including Treiber’s
non-blocking stack, Michael and Scott’s lock-free queue, Hendler et al's lock-free stack
with elimination back off and Michale’s lock-free hazard pointer stack.
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Lock Freedom

Consider a shared memory data structure which provides the users with finitely many
operations to access/modify the contents of the data-structure.

Assume that at a given time there is a fixed but arbitrary number of threads that are repeatedly
accessing the data-structure via the operations it provides.

Choose a point in the execution in which one or more operations have started.

Definition

Then lock-free implementation of the data-structure guarantees that some thread will complete an
operation in a finite number of steps.
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Lock Freedom and Termination

Definition

Let D be a shared-memory data structure with k-operations denoted by TT1s g5y TTp

Proving Properties of Concurrent Data Structures



Lock Freedom and Termination

Definition

Let D be a shared-memory data structure with k-operations denoted by 71, 7ty . . ., T,

Let P be a concurrent program with finitely many (say m) threads, with the i thread executing the
program S;.

P=S,l...1IS,
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Lock Freedom and Termination

Definition
Let D be a shared-memory data structure with k-operations denoted by TT1y TTys ey TTh.

Let P be a concurrent program with finitely many (say m) threads, with the i thread executing the
program S;.

P=S,l...1IS,

where each S; is a sequential program executing finitely many (say n;) D-operations.

Si=opi;0py;...;50p, whereVj €[1,...,n;],0p; € {my,... 14}
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Lock Freedom and Termination

Definition

Let D be a shared-memory data structure with k-operations denoted by TT1y TTys ey TTh.

Let P be a concurrent program with finitely many (say m) threads, with the i thread executing the
program S;.

P=S,l...1IS,

where each S; is a sequential program executing finitely many (say n;) D-operations.

Si=opi;0py;...;50p, whereVj €[1,...,n;],0p; € {my,... 14}

Theorem

The data-structure D with operations 7ty ... ., 7t is lock free iff every such program P terminates.

v
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Lock-free data structure: An example

Example

Let A be a heap location of type Int, shared between a a number of producer and consumer
threads.

A producer checks if A is 0, and if so, it updates A with a newly produced non-zero value and
terminates.

A consumer checks if A contains a non-zero value, and if so, consumes the value, sets the value
of A to 0 and loops to check if A contains a new value to consume. If A contains O then it
terminates.

We want to prove that if a consumer does not terminate then it is busy performing some useful
work, i.e, consuming the data-produced by the producer.
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Producer-Consumer Code

1 consumer():
2 Intx =1,
1 producer(int y): 3 . ;
2 atomic ( : Wh":t(:mi ?)
3 if ([A] ==0): . b=[A]
4 (Al=y; ; it (b Q)
5 else: s x=b
6 skip; ) 9 [4] 2/0;
10 else:
1 x=0;)
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Lock Freedom: Observation

Informal reasoning about lock-freedom

In an operation of a lock-free data-structure, the failure of a thread to make progress is always
caused by successful progress in an operation executed by another thread.

A thread which fails to make progress, typically retries the operation.

In concurrent execution of finitely many threads, each performing finitely many operations of a
lock-free data structure, one can precompute the upper bound on the number of retries that
each thread can perform.

Example

If 772, consumer threads and m, producer threads were running concurrently, then the total

number of loop iterations across all the consumer threads is at most 72, + m,.
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Introducing Quantitative reasoning

Definition (Affine Resource)
An affine resource is one which once consumed cannot be regenerated.
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Introducing Quantitative reasoning

Definition (Affine Resource)
An affine resource is one which once consumed cannot be regenerated.

Quantitative Reasoning
Each thread begins with a finite number of tokens which are affine resources.

Each time a thread wants to try performing the operation, it pays the price of one token
which gets consumed.

When a thread's operation succeeds, it doesn't need to retry. Hence it can compensate for
the failure of other threads by transferring the remaining tokens to the other threads
which failed to make progress.

When a thread’s operation fails, it is compensated by the thread which makes progress
and can thus pay for the subsequent retry.

v
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Introducing Quantitative reasoning

Definition (Affine Resource)
An affine resource is one which once consumed cannot be regenerated.

Quantitative Reasoning

The total number of tokens the system begins with provides the upper bound on the number of
retries.
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Producer-Consumer Code

1 consumer():
2

1 producer(int y): .

2 // Tokens available= {e} i Intx =1;

j atomic ( 5 while (x # 0):

. 6
> it([4] ==0) 7 atomic (
6
8 b=[A];

7 [A]=»; : (4]

8 ) )

9 else: 1? it (b #0)
10 ) 12 x=b;
11 skip; 3 [A] —0
12 ) "

3 15 else:
16 x=0;
17 )
18
19
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Producer-Consumer Code

1 consumer():
o 2
; producer(int y): : —
3 atomic 4
4 // Tokens available= {e} 2 while (x # 0):
2 #([A]==0r 7 atomic (
8 b=[A];
7 [A] =y 0 [ ]
8 . .
9 else : 10 if (b #0):
10 n
11 skip; 12 x=b;
P 13 [A]=0;
12 )
14
13
15 else:
16 x=0;
17 )
18
19
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; ntx=1:
. ;
) 4
: atomic ( s while(x £0)
. 6
5 if ([A] ==0): 7 atomic (
6 // Tokens available= {e} 8 b=[A]:
7 [Al=y: 9 '
8 i .
: e 1? if (b #0):
10 ‘ 12 x=b;
11 skip; 13 [A]=0;
12 ) 14
3 15 else:
16 x=0
17 )
18
19
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Producer-Consumer Code

1 consumer():
. . 2
; producer(int y): ; ntx =1
3 atomic ( i
! 5 while (x # 0):
) . 6
2 if([A]==0) 7 atomic (
7 [Al=y ° b=14)
8 // Tokens available= 0 ° .
. else. 10 if (b #0):
10 4 "
1 skip; 2 x=b;
P 13 [A]=0;
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; ntx=1:
! ;
. 4
j atomic 5 while (x # 0):
. 6
5 if ([4] ==0) ; atomic (
6
8 b=[A];
7 [A] =Y 9 [ ]
8 i .
; else ;|(1) if (17 75 0)
10 // Tokens available= {e} . x=b
11 skip; 13 [A] =’0‘
12 ) " ’
13 15 else:
16 x=0;
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Producer-Consumer Code

1 consumer():
Ly 2
; producer(int y): R ntx =1
3 atomic ( 4 .
. 5 while (x # 0):
. . 6
2 it([4] ==0) 7 atomic (
8 b=[A];
Al =y, ;
! [Al=y .
. else. 10 if (b #0):
10 4 "
11 skip; 12 EA:] fio,
12 // Tokens available= 0 ) 13 -
13 4
15 else:
16 x=0;
17 )
18
Tokens for compensation = {e} 19
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Producer-Consumer Code

1 consumer():
1 producer(inty): ; Intx =1,
' ;
. 4
j atomic ( 5 while (x # 0):
. 6
5 if ([4] ==0) ; atomic (
6
8 b=[A ;

7 [A]=y; 9 -

8 i :

9 else: 1? o # o
10 ‘ 12 x=b;
" skip; 13 [A]=0
12 ) 14
13 / Tokens available = 15 else:

16 x=0

17 )
18

19
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; //TOI;::;aiallla,b‘e -t
, ;
. 4
j atomic ( 5 while (x # 0):
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> it([4] ==0) 7 atomic (
6
8 b=[A];

7 [A]=»; : (4]

8 ) )
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; it =1
2 tomic ( 4 // Tokens available = {}
43& aromie 5 while (x # 0):
. 6
° ({41 ==0) 7 atomic (
6
8 b=[A];
7 [A]=»; : (4]
8 P .
9 else: 1? if (6 #0):
1 . 12 x=b:;
11 skip; 5 [A] 0
12 ) "
" 15 else:
16 x=0
17 )
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; tx =1
2 ;
. 4
j atomic { 5 while (x # 0):
. 6 // Tokens available = ()
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6
8 b=[A];
: 4= ; -
8 . :
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; ntx=1:
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; I
, ;
. 4
j atomic ( 5 while (x # 0):
. 6
> it([4] ==0) 7 atomic (
6
8 b=[A];
7 )= : .
8 ) )
9 else: 1? it (b #0)
10 ) 12 x=b;
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Producer-Consumer Code
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; I
5 ;
. 4
j atomic ( 5 while (x # 0):
. 6
> it([4] ==0) 7 atomic (
6
8 b=[A];

7 [A]=»; : (4]

8 ) .

9 else: 1? it (b #0)
10 ) 12 x=b;
11 skip; 3 [A] —0
12 ) "
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; ntx =1
5 ;
. 4
j atomic 5 while (x # 0):
. 6
> it([4]==0) 7 atomic (
6
8 b=[A];

7 [A]=»; : (4]

8 . .

9 else: 1? if(b #0)
° . 12 x=b;
11 skip; 3 [A] -0
12 ) "

2 15 else:
16 x=0;
17
18 # x #0 = Tokens available = {}
19
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Producer-Consumer Code

1 consumer():
1 producer(int y): ; I
5 ;
. 4
j atomic ( 5 while (x # 0):
. 6
> it([4] ==0) 7 atomic (
6
8 b=[A];

, [A]=» : 4]

8 ) .

9 else: 1? it (b #0)
° . 12 x=b;
1 skip; 13 [A]=0;
12 ) "

B 15 else:
16 x=0;
17 )
18
19 // Tokens Available = ()
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Concurrent Separation Logic (CSL): A quick and dirty introduction

In a concurrent program of 72 threads, the memory is partitioned into disjoint portions
hishy,...h,, and b where

Vie[l,...,m], b;isthe set of all memory locations accessible only to thread i
called the private heap of 7.

hs}mred is the remaining set of memory locations shared between the threads called the
shared heap.

h shared

Proving Properties of Concurrent Data Structures



Concurrent Separation Logic (CSL): A quick and dirty introduction

Heaps are characterised using separation logic assertions.

P,Qu=true | emp | [x]—y | P | PANQ |PVQ|PxQ|3Iz.P | Vz.P

Forany heap b, h = [x] — y iff b is a single memory cell x which stores the value y.
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Concurrent Separation Logic (CSL): A quick and dirty introduction

Heaps are characterised using separation logic assertions.

P,Qu=true | emp | [x]—y | P | PANQ |PVQ|PxQ|3Iz.P | Vz.P
Forany heap b, h = [x] — y iff b is a single memory cell x which stores the value y.

Suppose P and QQ are assertions, we say that a heap b F P« Q) iff

E PxQ
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Concurrent Separation Logic (CSL): A quick and dirty introduction

Heaps are characterised using separation logic assertions.

P,Qu=true | emp | [x]—y | P | PANQ |PVQ|PxQ|3Iz.P | Vz.P
Forany heap b, h = [x] — y iff b is a single memory cell x which stores the value y.

Suppose P and Q are assertions, we say that a heap hEPx Q iff we can partition b into
disjoint portions b p and hQ such that

E PxQ
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Concurrent Separation Logic (CSL): A quick and dirty introduction

Heaps are characterised using separation logic assertions.

P,Qu=true | emp | [x]—y | P | PANQ |PVQ|PxQ|3Iz.P | Vz.P
Forany heap b, h = [x] — y iff b is a single memory cell x which stores the value y.

Suppose P and Q are assertions, we say that a heap hEPx Q iff we can partition b into
disjoint portions sp and A, such that hp F P and b, F Q.

E P

B -
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Concurrent Separation Logic (CSL): A quick and dirty introduction

Let I, P, Q denote separation logic assertions describing the heaps.

Concurrent Separation Logic judgement
The judgement I = [P] C [Q] s to be understood as follows:

A thread executing program C beginning with a private heap that satisfies P executes
safely and terminates resulting in a private heap of the thread which satisfies Q.

Throughout the execution of C (except inside the atomic sections), the shared heap
satisfies /.

Gautham S Proving Properties of Concurrent Data Structures 28 July 2013
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Concurrent Separation Logic (CSL): A quick and dirty introduction

Rule for parallel composition: PAR

[H[P]G[Q] ... 1F[P,]C,[Q,]
LE[PysesPL] Gl || Gy [Qreo- % Q]
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Concurrent Separation Logic (CSL): A quick and dirty introduction

Rule for Atomic sections: ATOM
F[P«I]C[Q=*I]

Proving Properties of Concurrent Data Structures



Concurrent Separation Logic (CSL): A quick and dirty introduction

Rule for Atomic sections: ATOM
F[P«I]C[Q=*I]

[ F[PIC)Q]
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Back to the Paper: Quantitative CSL

Let {) be a predicate such that for any heap b, b I { iff the heap b has at least one affine
token.

- k
We write QO as a shorthand for s - -+ % ).
¢ O 9

k times
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Quantitative CSL

Rule for while loop in CSL:
IF[PAB]C[P]
I F[P]while(B) do C [P A—Cond]
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Quantitative CSL

Rule for while loop in Quantitative CSL:
PAB => P'+¢{ I+[P]C[P]
I+ [P]while(B) do C [P A-B]
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Using Quantitative CSL to prove lock freedom of Producer-Consumer

Example

Setting/ :=A— 0V ((Fu: u Z0ANA— u) Q)
Loop invariant P :=x =0V ¢,

loop condition B := x # 0

and the use of ATOM rule, we can show that

I+ [Q]consumerO[enmp]

and

I'+[Q]producerO[emp]
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28 July 2013

19/ 40



Using Quantitative CSL to prove lock freedom of Producer-Consumer

Example

If S, is a sequential program invoking exactly 72; calls from {producer(), consumer()} then
by induction we can prove that

I+ [0™]S; [emp]

If P is a concurrent program Sy || S5 || -+ || S, then by PAR rule we have
L+ [Q"] P [emp]

—_— m
where 7, = Zi: n;.

0

This proves the termination of P.

Gautham S|
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Qutline

o Aspect-Oriented Linearizability Proofs: Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis:
In the proceedings of CONCUR 2013
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Contributions of this paper

Reduces the task of verifying linearizability of a queue implementation to establishing four
basic properties each of which can be independently verified.

Demonstrates the linearizability of Herlihy-Wing queue using the proposed technique.

Uses RGSep, a combination of Rely-Guarantee Logic and Separation Logic to automate
the verification of three of these four properties.
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Linearizability

Suppose Q is a concurrent queue over the domain Val = N U {NULL} that supports two
methods

enq(x : N) that enqueues the value x into the queue. Returns void.
We denote an instance of this method call by (enq, x).

Each (eng, x) method instance has an invocation event denoted by (enq, x); and a
response event denoted by (enq, x). .

deq(void) which returns some value y from Vil.

We denote an instance of this method call by (dea, y).

Each (deg, ) method instance has an invocation event denoted by (deq, y); and a
response event denoted by (deq, ).
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Linearizability
Definition (History)

A history ¢, is a sequence of invocation and response events where every response event has a
corresponding invocation event that appears before it in the sequence.




Linearizability

Definition (History)
A history ¢, is a sequence of invocation and response events where every response event has a
corresponding invocation event that appears before it in the sequence.
(ena, 4)i (ena, 3)1’ (dea, NULL)l- (ena, 3), (ena, 4)r (ena, 5)i (dea, NULL)T (dea, 3)i (dea, 3)r
| L 0 i L & 0 T |
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Linearizability
Definition (History)

A history ¢, is a sequence of invocation and response events where every response event has a
corresponding invocation event that appears before it in the sequence.

(ena, 4); (ena, 3);  (deq, NULL); (eng, 3), (ena, 4), (ena, 5);  (dea, NULL),  (deaq, 3); (deq, 3),
= i = i i i = 0 |

L

(ena, 4); (eng, 3);  (dea, NULL);  (enq, 3), (ena, 4), (eng, 5);  (deq, NULL),  (deq, 3); (dea, 3), (ena, 5),
= i = i = i = 0 ., ]

L Lt

Note

Ina history ¢ not every invocation events needs to have a corresponding response event.
Such histories are called incomplete histories. Eg. {ena, 5);

An incomplete history ¢ can be completed by appending the response events for the
unmatched invocation events to obtain it's completion .

There could be several completions of an incomplete history.

v
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Linearizability

Definition (History)

A history ¢, is a sequence of invocation and response events where every response event has a
corresponding invocation event that appears before it in the sequence.

(ena, 4); (ena, 3);  (deq, NULL);  (ena, 3), (ena, 4), (eng, 5);  (deq, NULL),  (deq, 3); (dea, 3),
u B I B L = I 0 O

Definition (Happened Before)
Let ¢ be a history and < . the total order on the set of events in c.

hb
We say that the method call m happened-before a method call m’ in ¢, denoted bym —. m'’
iffm, <, m: .

Eg: {eng, 4) —=», {dea, 3).

v
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Linearizability

Definition (Linearlizability)

A history ¢ is said to be linearizable iff there exists some completion ¢ of ¢ in which

For every method m there s a linearization point at some instant between m; and m.,.

All methods appear to occur instantly at their linearization point, behaving as specified by the
sequential specification.

(ena, 4); (ena, 3);  (deq, NULL); (enq, 3), (ena, 4), (ena, 5);  (deq, NULL),  (deq, 3); (dea, 3), (ena, 5,

B8 —0-ee—He = 5 5 N e =)
mg = N @
(deq, NULL) {eng, 3) (ena, 4) (dea, 3) (ena, 5)
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Linearizability

Definition

The set of histories C of concurrent queue implementation is linearizable iff all the concurrent
histories ¢ € C are linearizable.




Linearizability

Definition

The set of histories C of concurrent queue implementation is linearizable iff all the concurrent
histories ¢ € C are linearizable.

.
Proving Linearizability of a concurrent queue implementation
The most common technique to prove the linearizability of a queue implementation is to
identify a point inside the code of eng and deq as the linearization points.
v
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Linearizability

Definition

The set of histories C of concurrent queue implementation is linearizable iff all the concurrent
histories ¢ € C are linearizable.

Proving Linearizability of a concurrent queue implementation

The most common technique to prove the linearizability of a queue implementation is to
identify a point inside the code of eng and deq as the linearization points.

However, this technique doesn't lend itself to proving linearizability of several concurrent queue
implementations. Eg: Herlihy-Wing queue.
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Proving Linearizability

1 Val deq():
1 intg.back=0 R ‘\;;tl lx,lmnge;
2 Val g.items[] = {NULL,NULL,...} i '
3 .
. while (true):
4 void enq(int x): Z at(omic)(
5 intz;
=gq. —1;
p atomic ( ; range = q.back — 1; ) D,
7 i = q.back; . ’
9 for z from O to range:
8 q-back++;) 1 E, o atomic ( 8
° atomic ( 1 x = g.items[i]
° . . 12 q.items[i] =NULL; )/ D,
1 q.items[i]=x )7 E, 5
14 if (2 7 NULL) return x;
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Proving Linearizability

Let t, #, v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E)

t.1
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Proving Linearizability

Let t, #, v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E)o(u:E)

ti  wu.a
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Proving Linearizability

Let t, #, v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E)o(u:E)o(v:D

v.i v.range

ti  wu.a
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Proving Linearizability

Let t, u, v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E)o(n:E)o(v:D,D,)o(u:E,)

v.i v.range

ti wu.a
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Proving Linearizability

Let t, u, v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E)o(u:E)o(v:D,D,)o(u:E,))o(t:E,)

v.i v.range

ti wu.a
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Proving Linearizability

Let t, #, v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E)o(u:E)o(v:Dy,D,)o(u:E,))o(t:E,))o(w:D,)

w.i w.range

v.i v.range
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Proving Linearizability

Let t, », v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E)o(u:E)o(v:Dy,D,)o(u:E,))o(t:E,))o(w:D,)

At the end of this execution fragment,
t has enqueued an item in g .items[0].
u has enqueued an item in g.ztems|[ 1].

v is ready to dequeue the value enqueued by #.

w is ready to dequeue the value enqueued by .
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Proving Linearizability

Let t, #, v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E))o(u:E)o(v:Dy,D,)o(u:E,))o(t:E,))o(w:D,)

Suppose we choose £ in enq to be the linearization point for ¢ then the following extension of
¢ is not linearizable via these linearization point.

(v :D,,return)o(z : Dy, D,, return)
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Suppose we choose £ in enq to be the linearization point for ¢ then the following extension of
¢ is not linearizable via these linearization point.

(v :D,,return)o(z : Dy, D,, return)

t : (enq, 7,) takes effect before # : (eng, 7,,)
v : (deq, 7,,) takes effect before z : (deq, 7,).
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Proving Linearizability

Let t, #, v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E)o(u:E)o(v:Dy,D,)o(u:E,))o(t:E,))o(w:D,)

Similarly if we choose E, in eng to be the linearization point for ¢ then we have the following
extension of ¢ which is not linearizable via this linearization point.

(w : Dy, return)o(z : Dy, D,, D,, return)
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Proving Linearizability

Let t, #, v, w be four concurrent threads. Let o denote context switch.
Consider the execution fragment:

c=(t:E)o(u:E)o(v:Dy,D,)o(u:E,))o(t:E,))o(w:D,)

Similarly if we choose E, in eng to be the linearization point for ¢ then we have the following
extension of ¢ which is not linearizable via this linearization point.

(w : Dy, return)o(z : Dy, D,, D,, return)

u : (ena, 7, ) takes effect before ¢ : (enq, 7,)
v : (deq, 7,) takes effect before z : (deq, 7,,).
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Aspect oriented Linearizability Proof

Intuitively, a correct concurrent history of a queue implementation should not have any of the
four violations.

(VFresh): A dequeue event returning a value not inserted by any enqueue event.
(VRepeat): Two dequeue events returning the value inserted by the same enqueue event.

(Vord): Two ordered dequeue events returning values inserted by ordered enqueue
events in the inverse order.

(VWit): A dequeue event returning NULL even though the queue is never logically empty
during the execution of the dequeue event.
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Aspect oriented Linearizability Proof

Intuitively, a correct concurrent history of a queue implementation should not have any of the
four violations.

(VFresh): A dequeue event returning a value not inserted by any enqueue event.
(VRepeat): Two dequeue events returning the value inserted by the same enqueue event.

(Vord): Two ordered dequeue events returning values inserted by ordered enqueue
events in the inverse order.

(VWit): A dequeue event returning NULL even though the queue is never logically empty
during the execution of the dequeue event.

Theorem

Aset of histories C of a concurrent queue is linearizable iff for every ¢ € C there exists a completion
C that has none of the VFresh, VRepeat, Vord, VWit violations.
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Proving Properties of Concurrent Data Structures 28 July 2013

37/ 40



Few remarks

Consider the following history

¢ = (eng, 1); - (enq, 1), - (enq, 2); - (ena, 2), - (deq, 2); - (deq, 2}, - {ena, 3); - {ena, 3),

Since it is a sequential history, we can rewrite it as

¢ = (eng, 1) - (enq, 2) - (deq, 2) - (enq, 3)

One may verify that it is a complete history and has none of the four violations.

Yet, it is not a correct history as per the sequential specification.

Proving Properties of Concurrent Data Structures 28 July 2013

37/ 40



Few remarks

Consider the following history
¢ = (eng, 1); - (enq, 1), - (enq, 2); - (ena, 2), - (deq, 2); - (deq, 2}, - {ena, 3); - {ena, 3),
Since it is a sequential history, we can rewrite it as

¢ = (eng, 1) - (enq, 2) - (deq, 2) - (enq, 3)

One may verify that it is a complete history and has none of the four violations.
Yet, it is not a correct history as per the sequential specification.

Observation

For any complete history ¢ € C, for any finite &, there exists values vy, . .., v, € NU {NULL}
such that the extension € - (deq, v); - (dea, v;), ++--- (dea, v); - (deq, v;,), € C.
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Few remarks

Consider the following sequential history of a queue.

Coy = (ena, 1) - (ena, 2) - (deq, 2) - (enq, 3) - (deq, v;) - (deq, v,)
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Few remarks

Consider the following sequential history of a queue.

C,.; = (ena, 1) - (enq, 2) - (deq, 2) - (ena, 3) - (deq, v,) - (deq, v,)

If o, 75 3 then ¢, is going to violate one of the four violations.

Ifo, &{1,2,3,NuLL}, C,,, violates VFresh.
If v, =2, ¢, violates VRepeat.

If v, =1, ,,, violates VOrd.

If v; = NULL, C,,, violates VWit.
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Few remarks

Consider the following sequential history of a queue.

Coyy = (ena, 1) - (ena, 2) - (deq, 2) - (enq, 3) - (deq, 3) - (dea, ’02)

We cannot assign any value to v, without violating one of the four properties.
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Few remarks

Consider the following sequential history of a queue.

Eext = (enq, 1) . (enq, 2) . (deq, 2) . (enq, 3) . (deq, 3) . (deq, vz)

We cannot assign any value to v, without violating one of the four properties.
Ifv, & {1,2,3,NULL}, C,,, violates VFresh.
If v, €{2,3}, C,,, violates VRepeat.
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Few remarks

Consider the following sequential history of a queue.

C,.p = (ena, 1) - (eng, 2) - (deq, 2) - (enq, 3) - (deq, 3) - (dea, v,)
We cannot assign any value to v, without violating one of the four properties.
Ifv, & {1,2,3,NULL}, C,,, violates VFresh.
If v, €{2,3}, C,,, violates VRepeat.
Ifv, =1, ¢, violates VOrd.

If v, =NULL, C,,, violates VWit.

Since the complete history ¢,,, € C and it has at least one of these violations, by the theorem,
C is not linearizable.
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Thank Youl!
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