# Proving Properties of Concurrent Data Structures Papers from LICS'13 and CONCUR'13

Gautham Shenoy R

CMI

28 July 2013

#### Outline

 Quantitative Reasoning for Proving Lock-Freedom - Jan Hoffman, Michael Marmar, Zhong Shao: In the proceedings of LICS 2013

Aspect-Oriented Linearizability Proofs: Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis: In the proceedings of CONCUR 2013

#### Outline

 Quantitative Reasoning for Proving Lock-Freedom - Jan Hoffman, Michael Marmar, Zhong Shao: In the proceedings of LICS 2013

Aspect-Oriented Linearizability Proofs: Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis: In the proceedings of CONCUR 2013

# Summary of the contributions:

Reduces proving *lock-freedom* to modular thread local termination of concurrent programs in which each thread executes a finite number of data-structure operations.

Introduces a *compensation based* quantitative reasoning technique for proving lock-freedom.

Formalises the technique by extending *Concurrent Separation Logic (CSL)* for total correctness.

Demonstrates the lock-free property exhibited by data structures including Treiber's non-blocking stack, Michael and Scott's lock-free queue, Hendler et al.'s lock-free stack with elimination back off and Michale's lock-free hazard pointer stack.

#### Lock Freedom

Consider a shared memory data structure which provides the users with finitely many operations to access/modify the contents of the data-structure.

Assume that at a given time there is a fixed but arbitrary number of threads that are repeatedly accessing the data-structure via the operations it provides.

Choose a point in the execution in which one or more operations have started.

#### Definition

Then lock-free implementation of the data-structure guarantees that some thread will complete an operation in a finite number of steps.

#### Definition

Let D be a shared-memory data structure with k-operations denoted by  $\pi_1,\pi_2,\ldots,\pi_k$ .

#### Definition

Let D be a shared-memory data structure with k-operations denoted by  $\pi_1, \pi_2, \ldots, \pi_k$ .

Let P be a concurrent program with finitely many (say m) threads, with the  $i^{th}$  thread executing the program  $S_i$ .

$$P = S_1 \mid\mid \dots \mid\mid S_m$$

#### Definition

Let D be a shared-memory data structure with k-operations denoted by  $\pi_1, \pi_2, \ldots, \pi_k$ .

Let P be a concurrent program with finitely many (say m) threads, with the  $i^{th}$  thread executing the program  $S_i$ .

$$P = S_1 \mid\mid \dots \mid\mid S_m$$

where each  $S_i$  is a sequential program executing finitely many (say  $n_i$ ) D-operations.

$$S_i = op_1; op_2; \dots; op_{n_i} \text{ where } \forall j \in [1, \dots, n_i], op_j \in \{\pi_1, \dots \pi_k\}$$

#### Definition

Let D be a shared-memory data structure with k-operations denoted by  $\pi_1, \pi_2, \ldots, \pi_k$ .

Let P be a concurrent program with finitely many (say m) threads, with the  $i^{th}$  thread executing the program  $S_i$ .

$$P = S_1 \parallel \ldots \parallel S_m$$

where each  $S_i$  is a sequential program executing finitely many (say  $n_i$ ) D-operations.

$$S_i = op_1; op_2; \dots; op_{n_i} \text{ where } \forall j \in [1, \dots, n_i], op_j \in \{\pi_1, \dots \pi_k\}$$

#### Theorem

The data-structure D with operations  $\pi_1,\ldots,\pi_n$  is lock free iff every such program P terminates.

# Lock-free data structure: An example

## Example

Let A be a heap location of type Int, shared between a a number of producer and consumer threads.

A producer checks if A is 0, and if so, it updates A with a newly produced non-zero value and terminates.

A consumer checks if A contains a non-zero value, and if so, consumes the value, sets the value of A to 0 and loops to check if A contains a new value to consume. If A contains 0 then it terminates.

We want to prove that if a consumer does not terminate then it is busy performing some useful work, i.e, consuming the data-produced by the producer.

```
\begin{array}{lll} & {\bf producer}({\bf int}\,{\bf y}): \\ & {\bf 2} & {\bf atomic}\;(\\ & & & {\bf if}\;([A] == 0): \\ & & & [A] = y; \\ & & {\bf else}: \\ & & & {\bf skip;}\;) \end{array}
```

```
\begin{array}{lll} & \mathbf{consumer}(): \\ & 2 & \mathbf{lnt} \ x = 1; \\ & 3 & \\ & 4 & \mathbf{while} \ (x \neq 0): \\ & 5 & \mathbf{atomic} \ ( \\ & 6 & b = [A]; \\ & 7 & \mathbf{if} \ (b \neq 0): \\ & 8 & x = b; \\ & 9 & [A] = 0; \\ & 10 & \mathbf{else}: \\ & 11 & x = 0; \end{pmatrix}
```

#### Lock Freedom: Observation

#### Informal reasoning about lock-freedom

In an operation of a lock-free data-structure, the failure of a thread to make progress is always caused by successful progress in an operation executed by another thread.

A thread which fails to make progress, typically retries the operation.

In concurrent execution of finitely many threads, each performing finitely many operations of a lock-free data structure, one can precompute the upper bound on the number of retries that each thread can perform.

## Example

If  $m_c$  consumer threads and  $m_p$  producer threads were running concurrently, then the total number of loop iterations across all the consumer threads is at most  $m_c+m_p$ .

# Introducing Quantitative reasoning

## Definition (Affine Resource)

An affine resource is one which once consumed cannot be regenerated.

# Introducing Quantitative reasoning

#### Definition (Affine Resource)

An affine resource is one which once consumed cannot be regenerated.

#### Quantitative Reasoning

Each thread begins with a finite number of tokens which are affine resources.

Each time a thread wants to *try* performing the operation, it pays the price of one token which gets consumed.

When a thread's operation succeeds, it doesn't need to retry. Hence it can *compensate* for the failure of other threads by *transferring* the remaining tokens to the other threads which failed to make progress.

When a thread's operation fails, it is compensated by the thread which makes progress and can thus pay for the subsequent retry.

# Introducing Quantitative reasoning

#### Definition (Affine Resource)

An affine resource is one which once consumed cannot be regenerated.

## Quantitative Reasoning

The total number of tokens the system begins with provides the upper bound on the number of retries.

```
1 producer(int y):
2  // Tokens available= \{ \bullet \}
3  atomic \langle
4
5  if ([A] == 0):
6
7  [A] = y;
8
9  else:
10
11  skip;
12  \rangle
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                   \dot{b} = [A];
 8
 9
                   if (b \neq 0):
10
11
                       x = b;
12
                        [A] = 0;
13
14
                   else:
15
                        x = 0;
16
17
18
19
```

```
producer(int y):

atomic (

| Tokens available= \{ \bullet \} 
| if ([A] == 0):

| A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                   \dot{b} = [A];
 9
                   if (b \neq 0):
10
11
                       x = b;
12
                        [A] = 0;
13
14
                   else:
15
                        x = 0;
16
17
18
19
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                   \dot{b} = [A];
 9
                   if (b \neq 0):
10
11
                       x = b;
12
                        [A] = 0;
13
14
                   else:
15
                        x = 0;
16
17
18
19
```

```
1 producer(int y):
2
3 atomic (
4
5 if ([A] == 0):
6
7 [A] = y;
8 // Tokens available= \emptyset
9 else:
10
11 skip;
12
13
```

Tokens for compensation =  $\{\bullet\}$ 

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                  b = [A];
                  if (b \neq 0):
10
11
                       x = b;
12
                       [A] = 0;
13
14
                  else ·
15
                       x = 0;
16
17
18
19
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                   \dot{b} = [A];
 9
                   if (b \neq 0):
10
11
                       x = b;
12
                        [A] = 0;
13
14
                   else:
15
                        x = 0;
16
17
18
19
```

```
1 producer(int y):
2
3 atomic (
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10 // Tokens available= \{ \bullet \}
11 skip;
12
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                   \dot{b} = [A];
 9
                   if (b \neq 0):
10
11
                       x = b;
12
                        [A] = 0;
13
14
                   else:
15
                        x = 0;
16
17
18
19
```

```
producer(int y):

atomic (

if ([A] == 0):

[A] = y;

else:

skip;

// Tokens available= \emptyset)
```

```
Tokens for compensation = \{\bullet\}
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                  b = [A];
 9
                  if (b \neq 0):
10
11
                       x = b:
12
                       [A] = 0;
13
14
                  else ·
15
                       x = 0;
16
17
18
19
```

```
1 producer(int y):
2
3 atomic (
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12  )
13  // Tokens available = \emptyset
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                   \dot{b} = [A];
 9
                   if (b \neq 0):
10
11
                       x = b;
12
                        [A] = 0;
13
14
                   else:
15
                        x = 0;
16
17
18
19
```

```
1 producer(int y):
2
3 atomic (
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12 )
```

```
consumer():
     /\!/ Tokens available = \{\bullet\}
          Int x = 1;
          while (x \neq 0):
               atomic (
                    \dot{b} = [A];
 8
 9
                    if (b \neq 0):
10
11
                         x = b;
12
                         [A] = 0;
13
14
                    else:
15
                         x = 0;
16
17
18
19
```

11/40

```
1 producer(int y):
2
3 atomic (
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12 )
```

```
consumer():
          Int x = 1;
          /\!\!/ Tokens available = \{\bullet\}
          while (x \neq 0):
               atomic (
                    \dot{b} = [A];
 9
                    if (b \neq 0):
10
11
                         x = b;
12
                         [A] = 0;
13
14
                    else:
15
                         x = 0;
16
17
18
19
```

```
1 producer(int y):
2
3 atomic (
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12 )
```

```
consumer():
          Int x = 1;
          while (x \neq 0):
               // Tokens available = \emptyset
               atomic (
                    \dot{b} = [A];
 9
                    if (b \neq 0):
10
11
                         x = b;
12
                         [A] = 0;
13
14
                    else:
15
                         x = 0;
16
17
18
19
```

```
1 producer(int y):
2
3 atomic \langle
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                   b = [A];
                   // Tokens available = \emptyset
 9
                   if (b \neq 0):
10
11
                        x = b;
12
                        [A] = 0;
13
14
                   else:
15
                        x = 0;
16
17
18
19
```

```
producer(int y):
         atomic (
             if ([A] == 0):
                 [A] = y;
             else:
 9
10
                 skip;
11
12
13
```

```
Tokens for compensation = \{\bullet\}
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                   b = [A];
 9
                   if (b \neq 0):
10
                       // Tokens Available = 0
11
                       x = b;
12
                       [A] = 0;
13
14
                   else ·
15
                       x = 0:
16
17
18
19
```

```
1 producer(int y):
2
3 atomic \langle
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12 \rangle
```

```
consumer():
          Int x = 1;
          while (x \neq 0):
               atomic (
                    \dot{b} = [A];
 9
                    if (b \neq 0):
10
11
                         x = b;
12
                         [A] = 0;
13
                         /\!/ Tokens available = \{\bullet\}
14
                    else ·
15
                         x = 0;
16
17
18
19
```

```
1 producer(int y):
2
3 atomic \langle
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12 \rangle
```

```
consumer():
         Int x = 1;
         while (x \neq 0):
              atomic (
                   b = [A];
                   // Tokens available = \emptyset
 9
                   if (b \neq 0):
10
11
                        x = b;
12
                        [A] = 0;
13
14
                   else:
15
                        x = 0;
16
17
18
19
```

```
1 producer(int y):
2
3 atomic (
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12 )
```

```
consumer():
          Int x = 1;
          while (x \neq 0):
               atomic (
                    \dot{b} = [A];
 9
                    if (b \neq 0):
10
11
                         x = b;
12
                         [A] = 0;
13
14
                    else:
15
                         x = 0:
16
                         // Tokens available = \emptyset )
17
18
19
```

```
1 producer(int y):
2
3 atomic (
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12 )
```

```
consumer():
          Int x = 1;
          while (x \neq 0):
               atomic (
                    \dot{b} = [A];
 9
                    if (b \neq 0):
10
11
                         x = b;
12
                         [A] = 0;
13
14
                    else:
15
                         x = 0;
16
17
               // x \neq 0 \implies Tokens available = \{\bullet\}
18
19
```

```
1 producer(int y):
2
3 atomic \langle
4
5 if ([A] == 0):
6
7 [A] = y;
8
9 else:
10
11 skip;
12 \rangle
```

```
consumer():
          Int x = 1;
          while (x \neq 0):
               atomic (
                    \dot{b} = [A];
 9
                    if (b \neq 0):
10
11
                         x = b;
12
                         [A] = 0;
13
14
                    else:
15
                         x = 0;
16
17
18
          // Tokens Available = \emptyset
19
```

# Concurrent Separation Logic (CSL): A quick and dirty introduction

In a concurrent program of m threads, the memory is partitioned into disjoint portions  $h_1,h_2,\dots h_m$  and  $h_s$  where

 $\forall i \in [1, ..., m], h_i$  is the set of all memory locations accessible only to thread i called the private heap of i.

 $b_{shared}$  is the remaining set of memory locations shared between the threads called the shared heap.



## Concurrent Separation Logic (CSL): A quick and dirty introduction

Heaps are characterised using separation logic assertions.

$$P,Q ::= true \mid emp \mid [x] \mapsto y \mid \neg P \mid P \land Q \mid P \lor Q \mid P \ast Q \mid \exists z.P \mid \forall z.P$$

For any heap  $h, h \models [x] \mapsto y$  iff h is a single memory cell x which stores the value y.

13 / 40

## Concurrent Separation Logic (CSL): A quick and dirty introduction

Heaps are characterised using separation logic assertions.

$$P,Q ::= true \mid emp \mid [x] \mapsto y \mid \neg P \mid P \land Q \mid P \lor Q \mid P \ast Q \mid \exists z.P \mid \forall z.P$$

For any heap  $h, h \models [x] \mapsto y$  iff h is a single memory cell x which stores the value y.

Suppose P and Q are assertions, we say that a heap  $h \vDash P * Q$  iff

$$h \models P*Q$$

Heaps are characterised using separation logic assertions.

$$P,Q ::= true \mid emp \mid [x] \mapsto y \mid \neg P \mid P \land Q \mid P \lor Q \mid P \ast Q \mid \exists z.P \mid \forall z.P$$

For any heap  $h, h \models [x] \mapsto y$  iff h is a single memory cell x which stores the value y.

Suppose P and Q are assertions, we say that a heap  $h \vDash P * Q$  iff we can partition h into disjoint portions  $h_P$  and  $h_Q$  such that

$$\begin{array}{c|c}
 & b_P \\
\hline
 & b_Q
\end{array}
\vDash P * Q$$

Heaps are characterised using separation logic assertions.

$$P,Q ::= true \mid emp \mid [x] \mapsto y \mid \neg P \mid P \land Q \mid P \lor Q \mid P \ast Q \mid \exists z.P \mid \forall z.P$$

For any heap  $h, h \vDash [x] \mapsto y$  iff h is a single memory cell x which stores the value y.

Suppose P and Q are assertions, we say that a heap  $h \vDash P * Q$  iff we can partition h into disjoint portions  $h_P$  and  $h_Q$  such that  $h_P \vDash P$  and  $h_Q \vDash Q$ .

$$\begin{array}{c|c} h_P & \models P \\ \hline \\ h_Q & \models Q \end{array}$$

Let I, P, Q denote separation logic assertions describing the heaps.

### Concurrent Separation Logic judgement

The judgement  $I \vdash [P] C [Q]$  is to be understood as follows:

A thread executing program C beginning with a private heap that satisfies P executes safely and terminates resulting in a private heap of the thread which satisfies Q.

Throughout the execution of  ${\it C}$  (except inside the atomic sections), the shared heap satisfies  ${\it I}$ .

### Rule for parallel composition: PAR

$$\frac{I \vdash [P_1] C_1[Q_1] \dots I \vdash [P_m] C_m[Q_m]}{I \vdash [P_1 * \dots * P_m] C_1 \| \dots \| C_m[Q_1 * \dots * Q_m]}$$



Rule for Atomic sections: ATOM

$$\vdash [P*I] \, C \, [Q*I]$$



Rule for Atomic sections: ATOM

$$\frac{\vdash [P*I] C [Q*I]}{I \vdash [P]\langle C \rangle [Q]}$$

# Back to the Paper: Quantitative CSL

Let  $\Diamond$  be a predicate such that for any heap h,  $h \models \Diamond$  iff the heap h has at least one affine token.

We write  $\lozenge^k$  as a shorthand for  $\underbrace{\lozenge * \cdots * \lozenge}_{k \; times}$ .

### Quantitative CSL

### Rule for while loop in CSL:

$$I \vdash [P \land B] C [P]$$

 $I \vdash [P]$  while(B) do  $C[P \land \neg Cond]$ 

### Quantitative CSL

### Rule for while loop in Quantitative CSL:

$$\frac{P \land B \Longrightarrow P' * \lozenge \quad I \vdash [P'] C [P]}{I \vdash [P] \text{ while}(B) \text{ do } C [P \land \neg B]}$$

# Using Quantitative CSL to prove lock freedom of Producer-Consumer

#### Example

Setting 
$$I := A \mapsto 0 \lor ((\exists u : u \neq 0 \land A \mapsto u) * \lozenge)$$

Loop invariant  $P := x = 0 \lor \Diamond$ ,

loop condition  $B := x \neq 0$ 

and the use of ATOM rule, we can show that

$$I \vdash [\lozenge] consumer()[emp]$$

and

$$I \vdash [\lozenge] producer()[emp]$$

## Using Quantitative CSL to prove lock freedom of Producer-Consumer

#### Example

If  $S_i$  is a sequential program invoking exactly  $n_i$  calls from  $\{producer(), consumer()\}$  then by induction we can prove that

$$I \vdash [\lozenge^{n_i}] S_i [emp]$$

.

If P is a concurrent program  $S_1 \mid\mid S_2 \mid\mid \cdots \mid\mid S_m$  then by PAR rule we have

$$I \vdash \left[ \lozenge^{n_{tot}} \right] P \left[ emp \right]$$

where  $n_{tot} = \sum_{i=0}^{m} n_i$ .

This proves the termination of P.

#### Outline

 Quantitative Reasoning for Proving Lock-Freedom - Jan Hoffman, Michael Marmar, Zhong Shao: In the proceedings of LICS 2013

Aspect-Oriented Linearizability Proofs: Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis: In the proceedings of CONCUR 2013

### Contributions of this paper

Reduces the task of verifying linearizability of a queue implementation to establishing four basic properties each of which can be independently verified.

Demonstrates the linearizability of Herlihy-Wing queue using the proposed technique.

Uses RGSep, a combination of Rely-Guarantee Logic and Separation Logic to automate the verification of three of these four properties.

Suppose Q is a concurrent queue over the domain  $Val = \mathbb{N} \cup \{\text{NULL}\}$  that supports two methods

 $enq(x:\mathbb{N})$  that enqueues the value x into the queue. Returns void.

We denote an instance of this method call by  $\langle enq, x \rangle$ .

Each  $\langle enq, x \rangle$  method instance has an invocation event denoted by  $\langle enq, x \rangle_i$  and a response event denoted by  $\langle enq, x \rangle_r$ .

deq(void) which returns some value y from Val.

We denote an instance of this method call by  $\langle deq, y \rangle$ .

Each  $\langle \deg, y \rangle$  method instance has an invocation event denoted by  $\langle \deg, y \rangle_i$  and a response event denoted by  $\langle \deg, y \rangle_r$ .

23 / 40

### Definition (History)

A history c, is a sequence of invocation and response events where every response event has a corresponding invocation event that appears before it in the sequence.

24 / 40

#### Definition (History)

A history c, is a sequence of invocation and response events where every response event has a corresponding invocation event that appears before it in the sequence.



#### Definition (History)

A history c, is a sequence of invocation and response events where every response event has a corresponding invocation event that appears before it in the sequence.



#### Note

In a history c not every invocation events needs to have a corresponding response event. Such histories are called *incomplete histories*. Eg.  $\{enq, 5\}_i$ 

An incomplete history c can be *completed* by appending the response events for the unmatched invocation events to obtain it's completion  $\hat{c}$ .

There could be several completions of an incomplete history.

#### Definition (History)

A history c, is a sequence of invocation and response events where every response event has a corresponding invocation event that appears before it in the sequence.

$$\langle \mathsf{enq}, 4 \rangle_i \quad \langle \mathsf{enq}, 3 \rangle_i \quad \langle \mathsf{deq}, \mathsf{NULL} \rangle_i \quad \langle \mathsf{enq}, 3 \rangle_r \quad \langle \mathsf{enq}, 4 \rangle_r \quad \langle \mathsf{enq}, 5 \rangle_i \quad \langle \mathsf{deq}, \mathsf{NULL} \rangle_r \quad \langle \mathsf{deq}, 3 \rangle_i \quad \langle \mathsf{deq}, 3 \rangle_r \quad \langle \mathsf{deq}, 3 \rangle_r$$

#### Definition (Happened Before)

Let c be a history and  $<_c$  the total order on the set of events in c.

We say that the method call m happened-before a method call m' in c, denoted by  $m \xrightarrow{hb}_c m'$  iff  $m_r <_c m'_i$ .

Eg: 
$$\langle enq, 4 \rangle \xrightarrow{hb}_{C} \langle deq, 3 \rangle$$
.



#### Definition (Linearlizability)

A history c is said to be linearizable iff there exists some completion  $\hat{c}$  of c in which

For every method m there is a linearization point at some instant between  $m_i$  and  $m_r$ .

All methods appear to occur instantly at their linearization point, behaving as specified by the sequential specification.



#### Definition

The set of histories C of concurrent queue implementation is linearizable iff all the concurrent histories  $c \in C$  are linearizable.

#### Definition

The set of histories C of concurrent queue implementation is linearizable iff all the concurrent histories  $c \in C$  are linearizable.

### Proving Linearizability of a concurrent queue implementation

The most common technique to prove the linearizability of a queue implementation is to identify a point inside the code of **enq** and **deq** as the linearization points.

#### Definition

The set of histories C of concurrent queue implementation is linearizable iff all the concurrent histories  $c \in C$  are linearizable.

### Proving Linearizability of a concurrent queue implementation

The most common technique to prove the linearizability of a queue implementation is to identify a point inside the code of **enq** and **deq** as the linearization points.

However, this technique doesn't lend itself to proving linearizability of several concurrent queue implementations. Eg: Herlihy-Wing queue.

```
1 int q.back = 0

2 \forall al\ q.items[] = \{NULL, NULL, ...\}

3 \forall oid\ enq(int\ x):

5 int i;

6 atomic\ (

7 i = q.back;

8 q.back + +; \} \# E_1

9 atomic\ (

11 q.items[i] = x\ \} \# E_2
```

```
Val deq():
         int i, range;
         Val x:
         while (true):
              atomic (
                  range = q.back - 1; \ // D_1
              for i from 0 to range:
                  atomic (
10
                       x = q.items[i]
11
                       q.items[i] = NULL; /// D_2
12
13
                  if (x \neq NULL) return x;
14
```

28 / 40

$$c = (t : E_1)$$



$$c = (t : E_1) \circ (u : E_1)$$



$$c = (t:E_1) \circ (u:E_1) \circ (v:D_1$$



Let t, u, v, w be four concurrent threads. Let o denote context switch. Consider the execution fragment:

$$c = (t : E_1) \circ (u : E_1) \circ (v : D_1, D_2)$$



29 / 40

$$c = (t : E_1) \circ (u : E_1) \circ (v : D_1, D_2) \circ (u : E_2)$$



$$c = (t : E_1) \circ (u : E_1) \circ (v : D_1, D_2) \circ (u : E_2) \circ (t : E_2)$$



$$c = (t : E_1) \circ (u : E_1) \circ (v : D_1, D_2) \circ (u : E_2) \circ (t : E_2) \circ (w : D_1)$$



Let t, u, v, w be four concurrent threads. Let o denote context switch. Consider the execution fragment:

$$c = (t:E_1) \circ (u:E_1) \circ (v:D_1,D_2) \circ (u:E_2) \circ (t:E_2) \circ (w:D_1)$$

At the end of this execution fragment,

t has enqueued an item in q.items[0].

u has enqueued an item in q.items[1].

 ${m v}$  is ready to dequeue the value enqueued by  ${m u}$  .

 ${\it w}$  is ready to dequeue the value enqueued by  $\it t$  .

Let t, u, v, w be four concurrent threads. Let o denote context switch. Consider the execution fragment:

$$c = (t : E_1) \circ (u : E_1) \circ (v : D_1, D_2) \circ (u : E_2) \circ (t : E_2) \circ (w : D_1)$$

Suppose we choose  $E_1$  in enq to be the linearization point for t then the following extension of c is not linearizable via these linearization point.

$$(v:D_2,return) \circ (z:D_1,D_2,return)$$

Let t, u, v, w be four concurrent threads. Let o denote context switch. Consider the execution fragment:

$$c = (t : E_1) \circ (u : E_1) \circ (v : D_1, D_2) \circ (u : E_2) \circ (t : E_2) \circ (w : D_1)$$

Suppose we choose  $E_1$  in **enq** to be the linearization point for t then the following extension of c is not linearizable via these linearization point.

$$(v:D_2,return) \circ (z:D_1,D_2,return)$$

 $\begin{array}{l} t: \langle \mathsf{enq}, \, n_t \rangle \text{ takes effect before } u: \langle \mathsf{enq}, \, n_u \rangle \\ v: \langle \mathsf{deq}, \, n_u \rangle \text{ takes effect before } z: \langle \mathsf{deq}, \, n_t \rangle. \end{array}$ 

Let t, u, v, w be four concurrent threads. Let o denote context switch. Consider the execution fragment:

$$c = (t : E_1) \circ (u : E_1) \circ (v : D_1, D_2) \circ (u : E_2) \circ (t : E_2) \circ (w : D_1)$$

Similarly if we choose  $E_2$  in **enq** to be the linearization point for t then we have the following extension of c which is not linearizable via this linearization point.

$$(w:D_2,return)\circ(z:D_1,D_2,D_2,return)$$

35 / 40

Let t, u, v, w be four concurrent threads. Let o denote context switch. Consider the execution fragment:

$$c = (t : E_1) \circ (u : E_1) \circ (v : D_1, D_2) \circ (u : E_2) \circ (t : E_2) \circ (w : D_1)$$

Similarly if we choose  $E_2$  in enq to be the linearization point for t then we have the following extension of c which is not linearizable via this linearization point.

$$(w:D_2,return) \circ (z:D_1,D_2,D_2,return)$$

 $u: \langle enq, n_u \rangle$  takes effect before  $t: \langle enq, n_t \rangle$  $v: \langle deq, n_t \rangle$  takes effect before  $z: \langle deq, n_u \rangle$ .

35 / 40

### Aspect oriented Linearizability Proof

Intuitively, a *correct* concurrent history of a queue implementation should not have any of the four violations.

(VFresh): A dequeue event returning a value not inserted by any enqueue event.

(VRepeat): Two dequeue events returning the value inserted by the same enqueue event.

(**Vord**): Two ordered dequeue events returning values inserted by ordered enqueue events in the inverse order.

(**VWit**): A dequeue event returning **NULL** even though the queue is never logically empty during the execution of the dequeue event.

# Aspect oriented Linearizability Proof

Intuitively, a *correct* concurrent history of a queue implementation should not have any of the four violations.

(VFresh): A dequeue event returning a value not inserted by any enqueue event.

(**VRepeat**): Two dequeue events returning the value inserted by the same enqueue event.

(**Vord**): Two ordered dequeue events returning values inserted by ordered enqueue events in the inverse order.

(**VWit**): A dequeue event returning **NULL** even though the queue is never logically empty during the execution of the dequeue event.

#### Theorem

A set of histories C of a concurrent queue is linearizable iff for every  $c \in C$  there exists a completion  $\hat{c}$  that has none of the VFresh, VRepeat, Vord, VWit violations.

#### Consider the following history

$$\hat{c} = \langle \mathsf{enq}, \ 1 \rangle_i \cdot \langle \mathsf{enq}, \ 1 \rangle_r \cdot \langle \mathsf{enq}, \ 2 \rangle_i \cdot \langle \mathsf{enq}, \ 2 \rangle_r \cdot \langle \mathsf{deq}, \ 2 \rangle_i \cdot \langle \mathsf{deq}, \ 2 \rangle_r \cdot \langle \mathsf{enq}, \ 3 \rangle_i \cdot \langle \mathsf{enq}, \ 3 \rangle_r \cdot \langle \mathsf{enq}, \ 3 \rangle_r$$

Consider the following history

$$\hat{c} = \langle \mathsf{enq}, \ 1 \rangle_i \cdot \langle \mathsf{enq}, \ 1 \rangle_r \cdot \langle \mathsf{enq}, \ 2 \rangle_i \cdot \langle \mathsf{enq}, \ 2 \rangle_r \cdot \langle \mathsf{deq}, \ 2 \rangle_i \cdot \langle \mathsf{deq}, \ 2 \rangle_r \cdot \langle \mathsf{enq}, \ 3 \rangle_i \cdot \langle \mathsf{enq}, \ 3 \rangle_r \cdot \langle \mathsf{enq}, \ 3 \rangle_r$$

Since it is a sequential history, we can rewrite it as

$$\hat{c} = \langle \text{enq}, 1 \rangle \cdot \langle \text{enq}, 2 \rangle \cdot \langle \text{deq}, 2 \rangle \cdot \langle \text{enq}, 3 \rangle$$

Consider the following history

$$\hat{c} = \langle \mathsf{enq}, \ 1 \rangle_i \cdot \langle \mathsf{enq}, \ 1 \rangle_r \cdot \langle \mathsf{enq}, \ 2 \rangle_i \cdot \langle \mathsf{enq}, \ 2 \rangle_r \cdot \langle \mathsf{deq}, \ 2 \rangle_i \cdot \langle \mathsf{deq}, \ 2 \rangle_r \cdot \langle \mathsf{enq}, \ 3 \rangle_i \cdot \langle \mathsf{enq}, \ 3 \rangle_r$$

Since it is a sequential history, we can rewrite it as

$$\hat{c} = \langle \text{enq}, 1 \rangle \cdot \langle \text{enq}, 2 \rangle \cdot \langle \text{deq}, 2 \rangle \cdot \langle \text{enq}, 3 \rangle$$

One may verify that it is a complete history and has none of the four violations.

Consider the following history

$$\hat{c} = \langle \mathsf{enq}, \ 1 \rangle_i \cdot \langle \mathsf{enq}, \ 1 \rangle_r \cdot \langle \mathsf{enq}, \ 2 \rangle_i \cdot \langle \mathsf{enq}, \ 2 \rangle_r \cdot \langle \mathsf{deq}, \ 2 \rangle_i \cdot \langle \mathsf{deq}, \ 2 \rangle_r \cdot \langle \mathsf{enq}, \ 3 \rangle_i \cdot \langle \mathsf{enq}, \ 3 \rangle_r$$

Since it is a sequential history, we can rewrite it as

$$\hat{c} = \langle \mathsf{enq}, \, 1 \rangle \cdot \langle \mathsf{enq}, \, 2 \rangle \cdot \langle \mathsf{deq}, \, 2 \rangle \cdot \langle \mathsf{enq}, \, 3 \rangle$$

One may verify that it is a complete history and has none of the four violations.

Yet, it is not a *correct* history as per the sequential specification.

Consider the following history

$$\hat{c} = \langle \mathsf{enq}, \ 1 \rangle_i \cdot \langle \mathsf{enq}, \ 1 \rangle_r \cdot \langle \mathsf{enq}, \ 2 \rangle_i \cdot \langle \mathsf{enq}, \ 2 \rangle_r \cdot \langle \mathsf{deq}, \ 2 \rangle_i \cdot \langle \mathsf{deq}, \ 2 \rangle_r \cdot \langle \mathsf{enq}, \ 3 \rangle_i \cdot \langle \mathsf{enq}, \ 3 \rangle_r \cdot \langle \mathsf{enq}, \ 3 \rangle_r$$

Since it is a sequential history, we can rewrite it as

$$\hat{c} = \langle \text{enq}, 1 \rangle \cdot \langle \text{enq}, 2 \rangle \cdot \langle \text{deq}, 2 \rangle \cdot \langle \text{enq}, 3 \rangle$$

One may verify that it is a complete history and has none of the four violations.

Yet, it is not a *correct* history as per the sequential specification.

#### Observation

For any complete history  $\hat{c} \in C$ , for any finite k, there exists values  $v_1, \ldots, v_k \in \mathbb{N} \cup \{\text{NULL}\}$  such that the extension  $\hat{c} \cdot \langle \deg, v_1 \rangle_i \cdot \langle \deg, v_1 \rangle_r \cdot \cdots \cdot \langle \deg, v_k \rangle_i \cdot \langle \deg, v_k \rangle_r \in C$ .

Consider the following sequential history of a queue.

$$\hat{c}_{ext} = \langle \text{enq, 1} \rangle \cdot \langle \text{enq, 2} \rangle \cdot \langle \text{deq, 2} \rangle \cdot \langle \text{enq, 3} \rangle \cdot \langle \text{deq, } v_1 \rangle \cdot \langle \text{deq, } v_2 \rangle$$

Consider the following sequential history of a queue.

$$\hat{c}_{ext} = \langle \text{enq, 1} \rangle \cdot \langle \text{enq, 2} \rangle \cdot \langle \text{deq, 2} \rangle \cdot \langle \text{enq, 3} \rangle \cdot \langle \text{deq, } v_1 \rangle \cdot \langle \text{deq, } v_2 \rangle$$

If  $v_1 \neq 3$  then  $\hat{c}_{ext}$  is going to violate one of the four violations.

If  $v_1 \notin \{1, 2, 3, \text{NULL}\}$ ,  $\hat{c}_{ext}$  violates **VFresh**.

If  $v_1 = 2$ ,  $\hat{c}_{ext}$  violates **VRepeat**.

If  $v_1 = 1$ ,  $\hat{c}_{ext}$  violates **VOrd**.

If  $v_1 = \text{NULL}$ ,  $\hat{c}_{ext}$  violates **VWit**.

38 / 40

Consider the following sequential history of a queue.

$$\hat{c}_{ext} = \langle \text{enq, 1} \rangle \cdot \langle \text{enq, 2} \rangle \cdot \langle \text{deq, 2} \rangle \cdot \langle \text{enq, 3} \rangle \cdot \langle \text{deq, 3} \rangle \cdot \langle \text{deq, } v_2 \rangle$$

We cannot assign any value to  $v_2$  without violating one of the four properties.

Consider the following sequential history of a queue.

$$\hat{c}_{ext} = \langle \text{enq, 1} \rangle \cdot \langle \text{enq, 2} \rangle \cdot \langle \text{deq, 2} \rangle \cdot \langle \text{enq, 3} \rangle \cdot \langle \text{deq, 3} \rangle \cdot \langle \text{deq, } v_2 \rangle$$

We cannot assign any value to  $v_2$  without violating one of the four properties.

If 
$$v_2 \notin \{1, 2, 3, \text{NULL}\}$$
,  $\hat{c}_{ext}$  violates **VFresh**.

Consider the following sequential history of a queue.

$$\hat{c}_{ext} = \langle \text{enq, 1} \rangle \cdot \langle \text{enq, 2} \rangle \cdot \langle \text{deq, 2} \rangle \cdot \langle \text{enq, 3} \rangle \cdot \langle \text{deq, 3} \rangle \cdot \langle \text{deq, } v_2 \rangle$$

We cannot assign any value to  $\emph{v}_2$  without violating one of the four properties.

If  $v_2 
otin \{1,2,3, \text{NULL}\}$ ,  $\hat{c}_{ext}$  violates **VFresh**.

If  $v_2 \in \{2,3\}$ ,  $\hat{c}_{ext}$  violates **VRepeat**.

39 / 40

Consider the following sequential history of a queue.

$$\hat{c}_{ext} = \langle \text{enq, 1} \rangle \cdot \langle \text{enq, 2} \rangle \cdot \langle \text{deq, 2} \rangle \cdot \langle \text{enq, 3} \rangle \cdot \langle \text{deq, 3} \rangle \cdot \langle \text{deq, } v_2 \rangle$$

We cannot assign any value to  $\emph{v}_2$  without violating one of the four properties.

If  $v_2 \notin \{1, 2, 3, \text{NULL}\}$ ,  $\hat{c}_{ext}$  violates **VFresh**.

If  $v_2 \in \{2,3\}$ ,  $\hat{c}_{ext}$  violates **VRepeat**.

If  $v_2 = 1$ ,  $\hat{c}_{ext}$  violates **VOrd**.

Consider the following sequential history of a queue.

$$\hat{c}_{ext} = \langle \text{enq, 1} \rangle \cdot \langle \text{enq, 2} \rangle \cdot \langle \text{deq, 2} \rangle \cdot \langle \text{enq, 3} \rangle \cdot \langle \text{deq, 3} \rangle \cdot \langle \text{deq, } v_2 \rangle$$

We cannot assign any value to  $\emph{v}_2$  without violating one of the four properties.

If  $v_2 \notin \{1, 2, 3, \text{NULL}\}$ ,  $\hat{c}_{ext}$  violates **VFresh**.

If  $v_2 \in \{2,3\}$ ,  $\hat{c}_{ext}$  violates **VRepeat**.

If  $v_2 = 1$ ,  $\hat{c}_{ext}$  violates **VOrd**.

If  $v_2 = \text{NULL}$ ,  $\hat{c}_{ext}$  violates **VWit**.

Consider the following sequential history of a queue.

$$\hat{c}_{ext} = \langle \text{enq, 1} \rangle \cdot \langle \text{enq, 2} \rangle \cdot \langle \text{deq, 2} \rangle \cdot \langle \text{enq, 3} \rangle \cdot \langle \text{deq, 3} \rangle \cdot \langle \text{deq, } v_2 \rangle$$

We cannot assign any value to  $\emph{v}_2$  without violating one of the four properties.

If  $v_2 \notin \{1, 2, 3, \text{NULL}\}$ ,  $\hat{c}_{ext}$  violates **VFresh**.

If  $v_2 \in \{2,3\}$ ,  $\hat{c}_{ext}$  violates **VRepeat**.

If  $v_2 = 1$ ,  $\hat{c}_{ext}$  violates **VOrd**.

If  $v_2 = \text{NULL}$ ,  $\hat{c}_{ext}$  violates **VWit**.

Consider the following sequential history of a queue.

$$\hat{c}_{ext} = \langle \text{enq, 1} \rangle \cdot \langle \text{enq, 2} \rangle \cdot \langle \text{deq, 2} \rangle \cdot \langle \text{enq, 3} \rangle \cdot \langle \text{deq, 3} \rangle \cdot \langle \text{deq, } v_2 \rangle$$

We cannot assign any value to  $\emph{v}_2$  without violating one of the four properties.

If  $v_2 \notin \{1, 2, 3, \text{NULL}\}$ ,  $\hat{c}_{ext}$  violates **VFresh**.

If  $v_2 \in \{2,3\}$ ,  $\hat{c}_{ext}$  violates **VRepeat**.

If  $v_2 = 1$ ,  $\hat{c}_{ext}$  violates **VOrd**.

If  $v_2 = \text{NULL}$ ,  $\hat{c}_{ext}$  violates **VWit**.

Since the complete history  $\hat{c}_{ext} \in C$  and it has at least one of these violations, by the theorem, C is not linearizable.

# Thank You!