
Verification of Parameterized Concurrent Programs

Chinmay Narayan

Indian Institute of Technology Delhi

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 1 / 23

Structure of This Talk

Parameterized Concurrent Programs

Finite State

Dynamic Cutoff Detection)

(Verification via

Infinite State

(Modular Verification

of Control and Data)

[Kaiser, Kroening, Wahl ’10][Farzan & Zachary’ 12]

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 2 / 23

Producer-Consumer Example
acquire(lock2);1
acquire(lock1);2
if * then3

assume(counter>0);4
counter++;5
unlock(lock1);6
unlock(lock2);7
return 1;8

end9
else10

assume(counter≤0);11
unlock(lock1);12
counter=0;13
while * do14

assume(batch>0);15
counter++;16
batch=batch-1;17

end18
assume(batch≤0);19
unlock(lock2);20
return batch;21

end22

lock(lock1);1
while * do2

assume(counter≤0);3
unlock(lock1);4
lock(lock1);5

end6
assume(counter>0);7
counter=counter-1;8
assert(counter≥0);9
unlock(lock1);10

Value of Counter as 0 should never flow to label 8 in the Consumer’s Code.

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 3 / 23

Producer-Consumer Example
acquire(lock2);1
acquire(lock1);2
if * then3

assume(counter>0);4
counter++;5
unlock(lock1);6
unlock(lock2);7
return 1;8

end9
else10

assume(counter≤0);11
unlock(lock1);12
counter=0;13
while * do14

assume(batch>0);15
counter++;16
batch=batch-1;17

end18
assume(batch≤0);19
unlock(lock2);20
return batch;21

end22

lock(lock1);1
while * do2

assume(counter≤0);3
unlock(lock1);4
lock(lock1);5

end6
assume(counter>0);7
counter=counter-1;8
assert(counter≥0);9
unlock(lock1);10

Value of Counter as 0 should never flow to label 8 in the Consumer’s Code.

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 3 / 23

Data Flow Graph of a Program

u, v ∈ Loc are the control locations of
the program, Vertices of the graph
m, n ∈ Tid are thread ids
x, y, z ∈ GVar ∪ LVar, set of global
and local variables
Flow of x from u to v: u→x v

Every block has input edge for every
variable
mod(u) is the set of variables
modified by u

mod(assume(· · ·)) = All variables

15:assume(batch>0)

16:counter++

17:batch=batch−1 batch

counter

batch

counter

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 4 / 23

Abstract Interpretation over Data Flow Graph

Let F(Var) be the FOL formula over variables
Abstract transition relation LJ.K# : Loc→ F(Var)→ F(Var)

Annotation ι : Loc→ F(Var) assigns a formula to each location
ι(u) denotes the formula that soundly approximates the values of variables
reaching at the start of the location u (so far)

Inductive annotation of the DFG
An annotation ι is inductive for a DFG 〈Loc,DF〉 if,

1 ι(uninit) = true
2 For all v ∈ Loc, [

∧
x∈Var(

∨
u→xv∈DF LJuK#(ι(u)))] =⇒ ι(v)

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 5 / 23

Introducing the Effect of Interference

Observable Condition c ∈ C: Predicates with free variables in GVar
locks and predicates q such that assume(q) is in the program and it uses only
global variables
e.g. For Producer/Consumer one possibility is
C = {counter > 0, lock1 = 0, lock2 = 0}
Observable Formulae F#(GVar) ⊆ F(GVar) constructed by conjunction of φi

such that φi ∈ C or ¬φi ∈ C
e.g. ¬(lock1 = 0) ∧ counter > 0

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 6 / 23

Introducing the Effect of Interference

Given an annotation ι define an abstract annotation ι# : Loc→ F#(GVar) such
that ι(u) =⇒ ι#(u)

Intuition: Get the abstract values of global variables visible at v

Why? Global variables influence the interference from other threads
C defines enabled : Loc→ F#(GVar)
Intuition: If the values of variables at v satisfy enabled(v) then the outgoing
transition from v can take place
Why? This will result in the addition of a new action in the trace, useful in
adding a data flow edge

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 7 / 23

Use of ι# and enabled(v) in Interference Analysis

A trace σ is a sequence of (tid,Loc), i.e. (1, u1).(2, u2). · · · (n, un)

Given an annotation ι and enabled relation, a trace σ is called ι− feasible iff
I σ = ε, or
I σ = σ′.(n, v) where σ′ is ι− feasible and for all threads m
ι#(lastlocm) ∧ enabled(v) is satisfiable

I Intuition: Thread n can execute the instruction at v if the current value of global
variables keep that transition enabled

A trace σ is said to witness a data flow edge u→x v iff
I ∃m, n. σ = ρ.(n, u).ρ′ such that x is modified at u, ρ′ does not contain any

modification of x and (m, v) is in ρ′

Sufficiency of two thread ι− feasible trace for witness checking
If an ι− feasible trace σ witnesses a data flow edge u→x v then there exists m, n such
that σ �m,n also witnesses the same edge.

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 8 / 23

Interference analysis rules

coReachable(initloc, initloc)
(COREACH-BASE)

coreachable(u0, v) Sat(enabled(u0) ∧ ι#(v)) (u0, u1) ∈ CF
coreachable(u1, v)

(COREACH-STEP)

coreachable(u0, v) x ∈ mod(u0) Sat(enabled(u0) ∧ ι#(v)) (u0, u1) ∈ CF
mayReach(u0, x, u1, v)

(MAYREACH-BASE)

mayReach(u0, x, u1, v) x 6∈ mod(u1) Sat(enabled(u1) ∧ ι#(v)) (u1, u2) ∈ CF
mayReach(u0, x, u2, v)

(MAYREACH-STEP-L)

mayReach(u0, x, u1, v0) x 6∈ mod(v0) Sat(enabled(v0) ∧ ι#(u1)) (v0, v1) ∈ CF
mayReach(u0, x, u1, v1)

(MAYREACH-STEP-R)

mayReach(u0, x, u1, v)
u0 →x v

(MAYREACH)

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 9 / 23

Steps In Checking for a Thread State’s Reachability

1 Let DF′ = ∅ be the empty data flow graph
2 Construct the sequential DFG of the program, DF, by sequential reaching

definition analysis

3 DF ← DF ∪ DF′

4 Construct an annotation ι for the DFG
5 Construct abstract annotation ι# from ι

6 Based on the annotation ι# add more data flow edges to DF. Let DF′ is the new
data flow graph

7 Repeat from 3 until DF′ 6= DF

At fixed point if the error state is not reachable then the program is correct.

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 10 / 23

Extension to Relational Abstract Domains

u→X v for X ∈ P (Var)

X ∈ mod(u) iff at least one x ∈ X is modified at u

A trace σ = ρ.(n, u).ρ′ witnesses u→X v

For all v ∈ Loc, [
∧

X∈P(Var)(
∨

u→Xv∈DF LJuK#(ι(u)))] =⇒ ι(v)

Interference analysis largely remains same
Partition heuristic: referenced and modified variables in the same instruction,
variables of φ in assume(φ)

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 11 / 23

Salient Points of This Approach

Use of Abstract Interpretation for constructing annotation on DFG (Reasoning
about Data)
Interference reasoning from the information obtained from the data reasoning
Feedback loop from data to control reasoning and vice versa
Need of only two threads to witness an edge
No abstraction refinement
What happens in presence of aliasing?

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 12 / 23

Finite State Programs

Parameterized Concurrent Programs

Finite State

Dynamic Cutoff Detection)

(Verification via

Infinite State

(Modular Verification

of Control and Data)

[Kaiser, Kroening, Wahl ’10][Farzan & Zachary’ 12]

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 13 / 23

Program Notations

Program has a set of shared variables and a set of local variables
Shared state (s1, s2, · · ·): valuations of shared variables
Local state (l1, l2, · · ·): valuations of local variables
Thread state: (s, l) pair where l denotes the valuations of local variables of this
thread
Program transition relation: (S,L)→ (S,L)

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 14 / 23

Semantics of ||n=1···∞ P

Family of replicated finite state systems (Mn)
∞
n=1

Global States and Transitions of Mn

〈s, l1, · · · , li−1, li, li+1, · · · , ln〉 → 〈s′, l1, · · · , li−1, l′i , li+1, · · · , ln〉 iff
(s, li)→ (s′, l′i) is a program transition relation.
Thread state (s′, l′i) reaches actively

Thread states {(s′, l1), · · · , (s′, li−1), (s′, li+1), · · · (s′, ln)} reach passively

Rn is the set of reachable thread states in Mn

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 15 / 23

Problem Statement

Cutoff
A number m is the cutoff for a parameterized transition system Mn iff for all m′ > m
Rm = Rm′

Rm = Rm+1 does not imply that m is the cutoff

Why cutoff is important for a thread state reachability checking?
Thread state reachability of finite state parameterized programs is decidable but
EXPSPACE [KM69][Rac78]
If cutoff is small, and efficiently computable, then thread state reachability can
be checked by efficient finite state model checkers

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 16 / 23

Observation

Lemma
If m is not a cut off for the family Mn and let m′ > m be minimum such that Rm′) Rm

then any thread state t ∈ Rm′ \ Rm with minimum distance from the initial state is
reached passively.

If reached actively then its parent state must have transitioned to this state in Rm as
well which contradicts with the assumption that t is a new state.

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 17 / 23

Candidate States

(r, hi)

i
��

(r, hj)

j
��

(s, li) (s, hj)

(r, hj)

i

����
��
��
�

j
��

(s, li) (s, hj)

A triple (r, hi), (r, hj) and (s, li) in Rm is a candidate triple iff
I (r, hi)→ (s, li) is a valid thread transition, and
I (s, hj) 6∈ Rm

or equivalently,
I r 6= s, li 6= hj and
I (r, hi) and (r, hj) are not simultaneously reachable in the same global state in Mm.

Implication of the Earlier Lemma
If no candidate triple exists in Rm then m is the cut off.

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 18 / 23

Candidate States

If a triple (r, hi), (r, hj),(s, li) in Rm is a candidate triple then (r, hi) and (r, hj) are
not simultaneously reachable in the same global state in Mm.
What if they can reach the same global state in some Mm′ for m′ > m?
Simultaneous reachability of a set of thread states in the family Mn can be
checked efficiently using backward coverability analysis.

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 19 / 23

Final algorithm

Input: System (Mn)
∞
n=1

Result: Cutoff of Mn

n:=1;1

computer Rn; // using finite-state model checker2

foreach candidate triple T do3

if candidates in T are simultaneously reachable then4

n:=n+1; goto 2 ;5

end6

end7

return n8

Algorithm 1: Cutoff Detection Algorithm

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 20 / 23

Comparison of ‘Duet’ and Cutoff Detection Approach

Benchmark: Boolean programs generated by SATABS from two linux device
drivers
Cutoff detection terminates in 84% of cases, proving 19 assertions as safe
‘Duet’ terminates in 97% of cases, proving 55 assertions as safe
Every assertion proved safe by DCO was also proved safe by ‘Duet’

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 21 / 23

Further Possibilities!!

Scope of using CEGAR based abstraction refinement [DKK+12] in ‘Duet’
Possibility of combining the best of these two approaches
Can such kind of reasoning be done for concurrent data structures?
Will it be sufficient to check for the parallel composition of c threads performing
push and pop operations to verify the correctness of a concurrent stack?
More about functional correctness rather than reachability checking

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 22 / 23

Further Possibilities!!

Scope of using CEGAR based abstraction refinement [DKK+12] in ‘Duet’
Possibility of combining the best of these two approaches
Can such kind of reasoning be done for concurrent data structures?
Will it be sufficient to check for the parallel composition of c threads performing
push and pop operations to verify the correctness of a concurrent stack?
More about functional correctness rather than reachability checking

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 22 / 23

Further Possibilities!!

Scope of using CEGAR based abstraction refinement [DKK+12] in ‘Duet’
Possibility of combining the best of these two approaches
Can such kind of reasoning be done for concurrent data structures?
Will it be sufficient to check for the parallel composition of c threads performing
push and pop operations to verify the correctness of a concurrent stack?
More about functional correctness rather than reachability checking

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 22 / 23

Further Possibilities!!

Scope of using CEGAR based abstraction refinement [DKK+12] in ‘Duet’
Possibility of combining the best of these two approaches
Can such kind of reasoning be done for concurrent data structures?
Will it be sufficient to check for the parallel composition of c threads performing
push and pop operations to verify the correctness of a concurrent stack?
More about functional correctness rather than reachability checking

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 22 / 23

Further Possibilities!!

Scope of using CEGAR based abstraction refinement [DKK+12] in ‘Duet’
Possibility of combining the best of these two approaches
Can such kind of reasoning be done for concurrent data structures?
Will it be sufficient to check for the parallel composition of c threads performing
push and pop operations to verify the correctness of a concurrent stack?
More about functional correctness rather than reachability checking

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 22 / 23

References I

Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, Michael Tautschnig,
and Thomas Wahl, Counterexample-guided abstraction refinement for symmetric
concurrent programs, Form. Methods Syst. Des. 41 (2012), no. 1, 25–44.

Azadeh Farzan and Zachary Kincaid, Verification of parameterized concurrent
programs by modular reasoning about data and control, Proceedings of the 39th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (New York, NY, USA), POPL ’12, ACM, 2012, pp. 297–308.

Alexander Kaiser, Daniel Kroening, and Thomas Wahl, Dynamic cutoff detection
in parameterized concurrent programs, Proceedings of the 22nd international
conference on Computer Aided Verification (Berlin, Heidelberg), CAV’10,
Springer-Verlag, 2010, pp. 645–659.

Richard M. Karp and Raymond E. Miller, Parallel program schemata, J.
Comput. Syst. Sci. 3 (1969), no. 2, 147–195.

Charles Rackoff, The covering and boundedness problems for vector addition
systems, Theoretical Computer Science 6 (1978), no. 2, 223 – 231.

Chinmay Narayan (Indian Institute of Technology Delhi) Verification of Parameterized Concurrent Programs 23 / 23

